bezier曲线原理(简单阐述)

原理和简单推导(以三阶为例):

P0、P02、P2是一条抛物线上顺序三个不同的点。过P0和P2点的两切线交于P1点,在P02点的切线交P0P1和P2P1于P01和P11,则如下比例成立:

这是所谓抛物线的三切线定理。

 

P0,P2固定,引入参数t,令上述比值为t:(1-t),即有:


t从0变到1,第一、二式就分别表示控制二边形的第一、二条边,它们是两条一次Bezier曲线。将一、二式代入第三式得:

 

t从0变到1时,它表示了由三顶点P0、P1、P2三点定义的一条二次Bezier曲线。

并且表明:

二次Bezier曲线P02可以定义为分别由前两个顶点(P0,P1)和后两个顶点(P1,P2)决定的一次Bezier曲线的线性组合

依次类推,

由四个控制点定义的三次Bezier曲线P03可被定义为分别由(P0,P1,P2)和(P1,P2,P3)确定的二条二次Bezier曲线的线性组合,由(n+1)个控制点Pi(i=0,1,...,n)定义的n次Bezier曲线P0n可被定义为分别由前、后n个控制点定义的两条(n-1)次Bezier曲线P0n-1与P1n-1的线性组合:

由此得到Bezier曲线的递推计算公式

这就是这就是de Casteljau算法,可以简单阐述三阶贝塞尔曲线原理。

 

下面是总结:转自http://blog.csdn.net/tianhai110/article/details/2203572

Bézier curve(贝塞尔曲线)是应用于二维图形应用程序的数学曲线。 曲线定义:起始点、终止点(也称锚点)、控制点。通过调整控制点,贝塞尔曲线的形状会发生变化。 1962年,法国数学家Pierre Bézier第一个研究了这种矢量绘制曲线的方法,并给出了详细的计算公式,因此按照这样的公式绘制出来的曲线就用他的姓氏来命名,称为贝塞尔曲线。

以下公式中:B(t)为t时间下 点的坐标;

P0为起点,Pn为终点,Pi为控制点

一阶贝塞尔曲线(线段):

意义:由 P0 至 P1 的连续点, 描述的一条线段

二阶贝塞尔曲线(抛物线):

原理:由 P0 至 P1 的连续点 Q0,描述一条线段。 
      由 P1 至 P2 的连续点 Q1,描述一条线段。 
      由 Q0 至 Q1 的连续点 B(t),描述一条二次贝塞尔曲线。

经验:P1-P0为曲线在P0处的切线。

三阶贝塞尔曲线:

通用公式:

高阶贝塞尔曲线:

4阶曲线:

5阶曲线:

原文地址:https://www.cnblogs.com/hnfxs/p/3148483.html

你可能感兴趣的:(图形学)