- 强连通分量——tarjan算法缩点
小陈同学_
图论算法图论c++
一.什么是强连通分量?强连通分量:在有向图G中,如果两个顶点u,v间(u->v)有一条从u到v的有向路径,同时还有一条从v到u的有向路径,则称两个顶点强连通(stronglyconnected)。如果有向图G的每两个顶点都强连通,称G是一个强连通图。有向图的极大强连通子图,称为强连通分量。简单点说就是:如果一个有向图中,存在一条回路,所有的结点至少被经过一次,这样的图为强连通图。在强连图图的基础上
- 强连通分量-tarjan算法缩点
小陈同学_
算法图论数据结构
一.什么是强连通分量?强连通分量:在有向图G中,如果两个顶点u,v间(u->v)有一条从u到v的有向路径,同时还有一条从v到u的有向路径,则称两个顶点强连通(stronglyconnected)。如果有向图G的每两个顶点都强连通,称G是一个强连通图。有向图的极大强连通子图,称为强连通分量。简单点说就是:如果一个有向图中,存在一条回路,所有的结点至少被经过一次,这样的图为强连通图。在强连图图的基础上
- POJ 2117 Electricity 题解 Tarjan 割点
kaiserqzyue
算法题目算法图论c++
题目链接:POJ2117Electricity题目描述:给定一张无向图,问删除一个结点后最多会有多少个强连通分量。题解:我们用scc表示初始的图中有多少个强连通分量,该值可以通过DFS计算出来。接下来我们只需要计算出删除每个割点会增加的强连通分量个数cnt即可,答案即为cnt+ans,对于一个强连通分量中的非根结点,用son表示有多少个子结点能够返回到当前结点或者当前结点之前遍历的结点,那么不难发
- POJ 1523 SPF题解 Tarjan 割点
kaiserqzyue
算法题目c++算法图论
题目链接:POJ1523SPF题目描述:给定一张连通的无向图,问哪些结点是割点,分别删除各个割点时会产生几个强连通分量。题解:求割点可以通过Tarjan算法来解决,我们接下来考虑删除一个割点后会产生多少个联通块。在Tarjan算法中,我们判断一个点是否是割点是通过其子结点能否回到遍历过的结点来判断。如果当前遍历的结点存在一个子结点不能够回到已经遍历过的结点,那么当前遍历的结点便是一个割点(这样的依
- Luogu P5058 [ZJOI2004] 嗅探器 题解 Tarjan 割点
kaiserqzyue
算法题目算法图论c++
题目链接:LuoguP5058[ZJOI2004]嗅探器题目描述:给定一张无向图,以及两个点s,t,你需要找到一个点(这个点不能是s或t),这个点被所有s,t之间的路径所经过。如果不存在这样的点,输出Nosolution。如果有多个这样的点,输出编号最小的。题解:我们很容易发现要删除的点一定是割点(按照题意,删除后,s与t不能进行通信,这说明强连通分量增加了)。我们只需要考虑哪些割点是满足条件的。
- 强连通分量(SCC,Strongly Connected Components)学习笔记 & edited in 2024.01.31
taoyiwei17_HNCS
学习笔记
更新日志upd2024.01.31写好文章基本内容upd2024.01.31发表于洛谷upd2024.02.01同步发表于CSDNupd2024.02.01同步发表于博客园cnblogsupd2024.02.01增加内容difficultPRO例题详解——P2746强连通分量(SCC,StronglyConnectedComponents)定义强连通有向图(DAG)中若其中两点xxx,yyy能彼此
- 强连通分量(dfs version)
yan_qiu_ynlchrz
算法整理算法
定义我们称有向图G=(V,E)G=(V,E)G=(V,E)是强连通的当且仅当对于GGG中任意两点u,vu,vu,v都存在一条uuu到vvv的路径和一条vvv到uuu的路径。如果G′G'G′为GGG的一个子图且G′G'G′是强连通的,则称G′G'G′是一个强连通子图。若G′G'G′满足极大性,则称G′G'G′是一个强连通分量。那么,如果我们将所有的强连通分量都缩成一个点,就可以得到一张DAGDAGD
- 算法竞赛——强连通分量
ThXe
ACM教程图论蓝桥杯ACM蓝桥杯ACM强连通分量
强连通分量强连通的定义是:有向图G强连通是指,G中任意两个结点连通。强连通分量(StronglyConnectedComponents,SCC)的定义是:极大的强连通子图也可以说,在强连图图的基础上加入一些点和路径,使得当前的图不在强连通,称原来的强连通的部分为强连通分量。DFS生成树DFS生成树是根据DFS搜索顺序构成的一颗生成树,形如(自上而下,自左而右):有向图的DFS生成树主要有4种边:树
- 图论 —— 图的连通性 —— Kosaraju 算法
Alex_McAvoy
#图论——图的连通性
【概述】Kosaraju算法是最容易理解,最通用的求强连通分量的算法,其关键的部分是同时应用了原图G和反图GT。【基本思想】1.对原图G进行DFS搜索,计算出各顶点完成搜索的时间f2.计算图的反图GT,对反图也进行DFS搜索,但此处搜索时顶点的访问次序不是按照顶点标号的大小,而是按照各顶点f值由大到小的顺序3.反图DFS所得到的森林即对应连通区域。原图原图进行DFS反图反图进行DFS上面提及原图G
- 图论(三):DFS的应用——拓扑排序与强连通分量
Sunburst7
算法图论
本节介绍如何使用DFS对有向无环图进行拓扑排序,以及求强连通分量的算法。目录一拓扑排序二拓扑排序的实现三强连通分量参考一拓扑排序什么是拓扑排序呢?对于一个有向无环图G=(V,E),拓扑排序是G中所有结点的一种线性次序,满足:如果图G包含边(u,v),则结点u在拓扑排序中处于结点v的前面。拓扑排序可以理解为一系列要处理的事件的先后的顺序。边(u,v)代表完成v必须先完成u。注意的是:如果图G包含环路
- 2.4总结
哥别敲代码了
寒假预备役学习算法学习数据结构
前几天把洛谷有关并查集几个题目都尝试写了一下,自己提前去了解了一下最短路径(Floyed算法)和强连通分量这一方面的内容便于后续学习。连通(顾名思义就是把几个点相连,既可以从a到b,也可以从b到a(无向图))强连通示例图弱连通示例图下面这图里就有着三个强连通分量:把三个分量各自可以看成一个点,进行度的运算最短路径(Floyed算法)在写题的时候总是会遇见这种求最短路径的题,所以提前学习了一下(主要
- 数据结构之图
忆梦九洲
数据结构图无环图与有向无环图按存储路径方向分类按存储结构分类
图图(Graph)是比树还要难以理解和学习的“多对多”数据结构,可以认为树也是图的一种。图的知识点众多,按照存储路径的方向分,可分为无向图和有向图,按照图的存储结构分,可分为完全图与有向完全图、连通图与强连通图、连通分量与强连通分量、无环图与有向无环图,其涉及的算法则包括克鲁斯卡尔算法、普里姆算法、迪杰斯特拉算法和弗洛伊德算法等。如下图所示为图的分类。与表和树相同,图虽然有“多对多”的逻辑关系,但
- Tarjan 算法思想求强连通分量及求割点模板(超详细图解)
harry1213812138
图论算法算法tarjan强连通分量割点割边
割点定义在一个无向图中,如果有一个顶点,删除这个顶点及其相关联的边后,图的连通分量增多,就称该点是割点,该点构成的集合就是割点集合。简单来说就是去掉该点后其所在的连通图不再连通,则该点称为割点。若去掉某条边后,该图不再连通,则该边称为桥或割边。若在图G中(如下图),删除uv这条边后,图的连通分量增多,则u和v点称为割点,uv这条边称为桥或割边。显然,有割点的图不是哈密尔顿图。Tarjan算法求强连
- Tarjan 算法及其应用
Kwjdefulgn
图论基础
Tarjan算法及其应用NO.1求强连通分量学习链接:https://www.cnblogs.com/shadowland/p/5872257.html学习心得:dfn[cur]记录访问cur结点的时间戳,low[cur]记录cur结点及其子树中时间戳最小是多少,严格意义上来讲low[cur],记录的是在不回头遍历父节点的前提下第一次能访问到的最早的已遍历结点的时间戳。显然当访问cur结点的子节点
- Tarjan算法
mrcrack
codeforces
Tarjan算法此文https://www.luogu.com.cn/blog/styx-ferryman/chu-tan-tarjan-suan-fa-qiu-qiang-lian-tong-fen-liang-post介绍不错,摘抄如下“tarjan陪伴强联通分量生成树完成后思路才闪光欧拉跑过的七桥古塘让你心驰神往”----《膜你抄》tarjan是一种求强连通分量、双连通分量的常用算法,其拓展
- Tarjan算法超超超详解(ACM/OI)(强连通分量/缩点)(图论)(C++)
seh_sjlj
OIC/C++算法
本文将持续更新。I前置芝士:深度优先搜索与边的分类首先我们来写一段基本的DFS算法(采用链式前向星存图):boolvis[MAXN];voiddfs(intu){vis[u]=true;for(inte=first[u];e;e=nxt[e]){//遍历连接u的每条边intv=go[e];if(!vis[v])dfs(v);//如果没有访问过就往下继续搜}}这段代码我们再熟悉不过了。接下来我们要引
- Tarjan算法与连通性
流苏贺风
图论算法算法dfs强联通图论
Tarjan算法Tarjan与有向图一、强连通定义二、Tarjan算法求强连通分量2.tarjan的构成要素3.算法的分析4.算法的实现11,未被访问:22,被访问过,已经在栈中:5.算法的代码实物三,缩点四,实际应用Tarjan和无向图一,定义和性质二,割边(桥)和E-DCC11,模板22,实际应用三,割点11,概况22,实现四,V-DCC(点双联通分量)1,求v-dcc2,v-dcc特异性缩点
- 超级详细的Tarjan算法
ivysister
acm题tarjan最大连通分量
有向图强连通分量]在有向图G中,如果两个顶点间至少存在一条路径,称两个顶点强连通(stronglyconnected)。如果有向图G的每两个顶点都强连通,称G是一个强连通图。非强连通图有向图的极大强连通子图,称为强连通分量(stronglyconnectedcomponents)。下图中,子图{1,2,3,4}为一个强连通分量,因为顶点1,2,3,4两两可达。{5},{6}也分别是两个强连通分量。
- 常用图算法实现--Spark
zealscott
使用Spark实现PageRank,强连通分量等图算法PageRank数据准备边:1211523242526273134251151261676871788189810914911011013111211112113141412151网页:123456789101112131415将这两个文件放入HDFS:hdfsdfs-mkdirinput/PageRankhdfsdfs-putlinks.tx
- 算法设计与分析
羊驼冲冲冲
算法学习
目录三个渐进记号分治策略①迭代法②递归树法③主定理法分治的应用堆堆应用动态规划动态规划应用贪心算法贪心算法应用回溯法回溯法应用图图的遍历BFSDFS记录时间戳拓扑排序强连通分量最小生成树流网络NP、P摊还分析三个渐进记号f(n)=O(g(n))其实是代表f(n)∈O(g(n))渐近上界记号OO(g(n))={f(n):存在正常量c和n0,使得对所有n≥n0,有0≤f(n)≤cg(n)}渐近下界记号
- 【C - 班长竞选】
贝耶儿
题意:大学班级选班长,N个同学均可以发表意见若意见为AB则表示A认为B合适,意见具有传递性,即A认为B合适,B认为C合适,则A也认为C合适勤劳的TT收集了M条意见,想要知道最高票数,并给出一份候选人名单,即所有得票最多的同学。思路:从图中找出所有强连通分量进行缩点,那么首先某一个强连通分量中的人获得了该强连通分量中节点数目减一得票数。他们还会获得其他与之相连的强连通分量的票数。计算出每个节点对应的
- Tarjan-vDCC,点双连通分量,点双连通分量缩点
EQUINOX1
数据结构与算法算法c++数据结构职场和发展深度优先
前言双连通分量是无向图中的一个概念,它是指无向图中的一个极大子图,根据限制条件可以分为边双连通分量和点双连通分量,欲了解双连通分量需先了解Tarjan算法,以及割点割边的概念及求解。本篇博客介绍点双连通分量的相关内容。前置知识学习点双连通分量前,你需要先了解:关于Tarjan:SCC-Tarjan算法,强连通分量算法,从dfs到Tarjan详解-CSDN博客关于缩点:SCC-Tarjan,缩点问题
- Tarjan-eDcc,边双连通分量问题,eDcc缩点问题
EQUINOX1
数据结构与算法图论数据结构c++算法
文章目录前言前置知识边双连通分量的定义推论Tarjan算法求解eDcc搜索树强连通分量的根时间戳追溯值算法原理算法流程代码实现eDcc缩点问题OJ详解题目描述原题链接思路分析AC代码前言双连通分量是无向图中的一个概念,它是指无向图中的一个极大子图,根据限制条件可以分为边双连通分量和点双连通分量,欲了解双连通分量需先了解Tarjan算法,以及割点割边的概念及求解。本篇博客介绍边连通分量的相关内容。前
- SCC-Tarjan,缩点问题
EQUINOX1
算法c++数据结构图搜索算法动态规划
文章目录前言引例什么是缩点?缩点的应用一、合并强连通子图为强连通图题目描述输入/输出格式原题链接题目详解二、集合间偏序关系题目描述输入/输出格式原题链接题目详解三、最大点权和路径题目描述输入/输出格式原题链接题目详解其他OJ练习前言图论中的缩点问题通常是指在有向图中,通过将强连通分量内的所有节点缩成一个节点,从而简化图的结构,这个过程称为缩点。这样做可以帮助我们分析和解决一些实际问题。阅读本文前如
- SCC-Tarjan算法,强连通分量算法,从dfs到Tarjan详解
EQUINOX1
数据结构与算法算法深度优先开发语言c++数据结构
文章目录前言定义强连通强连通分量Tarjan算法原理及实现概念引入搜索树有向边的分类强连通分量的根时间戳追溯值算法原理从深搜到TarjanTarjan算法流程Tarjan算法代码实现OJ练习:前言强连通分量是图论中的一个重要概念,它在许多领域都有广泛的应用,如网络路由中识别环路,社交网络分析,编译器优化识别出代码中的循环结构,图像处理中识别出图像中的连通区域,从而进行图像分割和特征提取等。因而了解
- 数据结构—图的定义及基本术语
turbo夏日漱石
数据结构与算法数据结构
目录图的定义图的基本术语(1)子图:(2)无向完全图和有向完全图:(3)稀疏图和稠密图:(4)权和网:(5)邻接点:(6)度、入度和出度:(7)路径和路径长度:(8)回路或环:(9)简单路径、简单回路或简单环:(10)连通、连通图和连通分量:(11)强连通图和强连通分量:(12)连通图的生成树:(13)有向树和生成森林:图的定义图(Graph)G由两个集合V和E组成,记为G=(VE)1、其中V是顶
- 数据结构复盘——第六章:图
时生丶
数据结构数据结构图论
文章目录第一部分:图的一些专业术语1、有向图和无向图2、简单图和多重图3、完全图(也称简单完全图)4、稠密图和稀疏图5、邻接点6、连通,连通图和连通分量7、强连通,强连通图和强连通分量8、路径,路径长度和回路9、简单路径和简单回路10、距离11、生成树和生成森林12、子图13、度,入度和出度14、有向树15、权和网第二部分:图的存储方式1、邻接矩阵2、邻接表3、邻接多重表4、十字链表第二部分习题第
- 【算法每日一练]-图论(保姆级教程篇11 tarjan模板篇)无向图的桥 #无向图的割点 #有向图的强连通分量
亦歌希望你变强啊
图论图论算法深度优先数据结构c++
目录预备知识模板1:无向图的桥模板2:无向图的割点模板3:有向图的强连通分量讲之前先补充一下必要概念:预备知识无向图的【连通分量】:即极大联通子图,再加入一个节点就不再连通(对于非连通图一定两个以上的连通分量)无向图的【(割边或)桥】:即去掉该边,图就变成了两个连通子图无向图的【割点】:将该点和相关联的边去掉,图将变成两个及以上的子图注意:有割点不一定有桥,但是有桥一定有割点无向图的【边双连通图】
- 2023/5/30---个人总结---Tarjan算法
priority_key
算法
Tarjan算法Tarjan算法是基于深度优先搜索的算法,用于求解图的连通性问题。用途:Tarjan算法可以在线性时间内求出无向图的割点与桥,进一步地可以求解无向图的双连通分量;同时,也可以求解有向图的强连通分量、必经点与必经边。其中需要两个重要的数组low,dfn。dfn:作为这个点搜索的次序编号(时间戳),简单来说就是第几个被搜索到的。low:追溯值---(用来表示从当前节点x作为搜索树的根节
- 【UVALive】6776 2014WorldFinal G Metal Processing Plant【2-sat——bitset优化kosaraju求scc】
poursoul
2-sat强连通【SCC】双指针bitset
题目链接:MetalProcessingPlantbitset优化kosaraju,复杂度O(n^2/64),总复杂度O(n^4/64)。#includeusingnamespacestd;typedeflonglongLL;typedefpairpii;typedefunsignedlonglongULL;#defineclr(a,x)memset(a,x,sizeofa)constintMAX
- mysql主从数据同步
林鹤霄
mysql主从数据同步
配置mysql5.5主从服务器(转)
教程开始:一、安装MySQL
说明:在两台MySQL服务器192.168.21.169和192.168.21.168上分别进行如下操作,安装MySQL 5.5.22
二、配置MySQL主服务器(192.168.21.169)mysql -uroot -p &nb
- oracle学习笔记
caoyong
oracle
1、ORACLE的安装
a>、ORACLE的版本
8i,9i : i是internet
10g,11g : grid (网格)
12c : cloud (云计算)
b>、10g不支持win7
&
- 数据库,SQL零基础入门
天子之骄
sql数据库入门基本术语
数据库,SQL零基础入门
做网站肯定离不开数据库,本人之前没怎么具体接触SQL,这几天起早贪黑得各种入门,恶补脑洞。一些具体的知识点,可以让小白不再迷茫的术语,拿来与大家分享。
数据库,永久数据的一个或多个大型结构化集合,通常与更新和查询数据的软件相关
- pom.xml
一炮送你回车库
pom.xml
1、一级元素dependencies是可以被子项目继承的
2、一级元素dependencyManagement是定义该项目群里jar包版本号的,通常和一级元素properties一起使用,既然有继承,也肯定有一级元素modules来定义子元素
3、父项目里的一级元素<modules>
<module>lcas-admin-war</module>
<
- sql查地区省市县
3213213333332132
sqlmysql
-- db_yhm_city
SELECT * FROM db_yhm_city WHERE class_parent_id = 1 -- 海南 class_id = 9 港、奥、台 class_id = 33、34、35
SELECT * FROM db_yhm_city WHERE class_parent_id =169
SELECT d1.cla
- 关于监听器那些让人头疼的事
宝剑锋梅花香
画图板监听器鼠标监听器
本人初学JAVA,对于界面开发我只能说有点蛋疼,用JAVA来做界面的话确实需要一定的耐心(不使用插件,就算使用插件的话也没好多少)既然Java提供了界面开发,老师又要求做,只能硬着头皮上啦。但是监听器还真是个难懂的地方,我是上了几次课才略微搞懂了些。
- JAVA的遍历MAP
darkranger
map
Java Map遍历方式的选择
1. 阐述
对于Java中Map的遍历方式,很多文章都推荐使用entrySet,认为其比keySet的效率高很多。理由是:entrySet方法一次拿到所有key和value的集合;而keySet拿到的只是key的集合,针对每个key,都要去Map中额外查找一次value,从而降低了总体效率。那么实际情况如何呢?
为了解遍历性能的真实差距,包括在遍历ke
- POJ 2312 Battle City 优先多列+bfs
aijuans
搜索
来源:http://poj.org/problem?id=2312
题意:题目背景就是小时候玩的坦克大战,求从起点到终点最少需要多少步。已知S和R是不能走得,E是空的,可以走,B是砖,只有打掉后才可以通过。
思路:很容易看出来这是一道广搜的题目,但是因为走E和走B所需要的时间不一样,因此不能用普通的队列存点。因为对于走B来说,要先打掉砖才能通过,所以我们可以理解为走B需要两步,而走E是指需要1
- Hibernate与Jpa的关系,终于弄懂
avords
javaHibernate数据库jpa
我知道Jpa是一种规范,而Hibernate是它的一种实现。除了Hibernate,还有EclipseLink(曾经的toplink),OpenJPA等可供选择,所以使用Jpa的一个好处是,可以更换实现而不必改动太多代码。
在play中定义Model时,使用的是jpa的annotations,比如javax.persistence.Entity, Table, Column, OneToMany
- 酸爽的console.log
bee1314
console
在前端的开发中,console.log那是开发必备啊,简直直观。通过写小函数,组合大功能。更容易测试。但是在打版本时,就要删除console.log,打完版本进入开发状态又要添加,真不够爽。重复劳动太多。所以可以做些简单地封装,方便开发和上线。
/**
* log.js hufeng
* The safe wrapper for `console.xxx` functions
*
- 哈佛教授:穷人和过于忙碌的人有一个共同思维特质
bijian1013
时间管理励志人生穷人过于忙碌
一个跨学科团队今年完成了一项对资源稀缺状况下人的思维方式的研究,结论是:穷人和过于忙碌的人有一个共同思维特质,即注意力被稀缺资源过分占据,引起认知和判断力的全面下降。这项研究是心理学、行为经济学和政策研究学者协作的典范。
这个研究源于穆来纳森对自己拖延症的憎恨。他7岁从印度移民美国,很快就如鱼得水,哈佛毕业
- other operate
征客丶
OSosx
一、Mac Finder 设置排序方式,预览栏 在显示-》查看显示选项中
二、有时预览显示时,卡死在那,有可能是一些临时文件夹被删除了,如:/private/tmp[有待验证]
--------------------------------------------------------------------
若有其他凝问或文中有错误,请及时向我指出,
我好及时改正,同时也让我们一
- 【Scala五】分析Spark源代码总结的Scala语法三
bit1129
scala
1. If语句作为表达式
val properties = if (jobIdToActiveJob.contains(jobId)) {
jobIdToActiveJob(stage.jobId).properties
} else {
// this stage will be assigned to "default" po
- ZooKeeper 入门
BlueSkator
中间件zk
ZooKeeper是一个高可用的分布式数据管理与系统协调框架。基于对Paxos算法的实现,使该框架保证了分布式环境中数据的强一致性,也正是基于这样的特性,使得ZooKeeper解决很多分布式问题。网上对ZK的应用场景也有不少介绍,本文将结合作者身边的项目例子,系统地对ZK的应用场景进行一个分门归类的介绍。
值得注意的是,ZK并非天生就是为这些应用场景设计的,都是后来众多开发者根据其框架的特性,利
- MySQL取得当前时间的函数是什么 格式化日期的函数是什么
BreakingBad
mysqlDate
取得当前时间用 now() 就行。
在数据库中格式化时间 用DATE_FORMA T(date, format) .
根据格式串format 格式化日期或日期和时间值date,返回结果串。
可用DATE_FORMAT( ) 来格式化DATE 或DATETIME 值,以便得到所希望的格式。根据format字符串格式化date值:
%S, %s 两位数字形式的秒( 00,01,
- 读《研磨设计模式》-代码笔记-组合模式
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
import java.util.ArrayList;
import java.util.List;
abstract class Component {
public abstract void printStruct(Str
- 4_JAVA+Oracle面试题(有答案)
chenke
oracle
基础测试题
卷面上不能出现任何的涂写文字,所有的答案要求写在答题纸上,考卷不得带走。
选择题
1、 What will happen when you attempt to compile and run the following code? (3)
public class Static {
static {
int x = 5; // 在static内有效
}
st
- 新一代工作流系统设计目标
comsci
工作算法脚本
用户只需要给工作流系统制定若干个需求,流程系统根据需求,并结合事先输入的组织机构和权限结构,调用若干算法,在流程展示版面上面显示出系统自动生成的流程图,然后由用户根据实际情况对该流程图进行微调,直到满意为止,流程在运行过程中,系统和用户可以根据情况对流程进行实时的调整,包括拓扑结构的调整,权限的调整,内置脚本的调整。。。。。
在这个设计中,最难的地方是系统根据什么来生成流
- oracle 行链接与行迁移
daizj
oracle行迁移
表里的一行对于一个数据块太大的情况有二种(一行在一个数据块里放不下)
第一种情况:
INSERT的时候,INSERT时候行的大小就超一个块的大小。Oracle把这行的数据存储在一连串的数据块里(Oracle Stores the data for the row in a chain of data blocks),这种情况称为行链接(Row Chain),一般不可避免(除非使用更大的数据
- [JShop]开源电子商务系统jshop的系统缓存实现
dinguangx
jshop电子商务
前言
jeeshop中通过SystemManager管理了大量的缓存数据,来提升系统的性能,但这些缓存数据全部都是存放于内存中的,无法满足特定场景的数据更新(如集群环境)。JShop对jeeshop的缓存机制进行了扩展,提供CacheProvider来辅助SystemManager管理这些缓存数据,通过CacheProvider,可以把缓存存放在内存,ehcache,redis,memcache
- 初三全学年难记忆单词
dcj3sjt126com
englishword
several 儿子;若干
shelf 架子
knowledge 知识;学问
librarian 图书管理员
abroad 到国外,在国外
surf 冲浪
wave 浪;波浪
twice 两次;两倍
describe 描写;叙述
especially 特别;尤其
attract 吸引
prize 奖品;奖赏
competition 比赛;竞争
event 大事;事件
O
- sphinx实践
dcj3sjt126com
sphinx
安装参考地址:http://briansnelson.com/How_to_install_Sphinx_on_Centos_Server
yum install sphinx
如果失败的话使用下面的方式安装
wget http://sphinxsearch.com/files/sphinx-2.2.9-1.rhel6.x86_64.rpm
yum loca
- JPA之JPQL(三)
frank1234
ormjpaJPQL
1 什么是JPQL
JPQL是Java Persistence Query Language的简称,可以看成是JPA中的HQL, JPQL支持各种复杂查询。
2 检索单个对象
@Test
public void querySingleObject1() {
Query query = em.createQuery("sele
- Remove Duplicates from Sorted Array II
hcx2013
remove
Follow up for "Remove Duplicates":What if duplicates are allowed at most twice?
For example,Given sorted array nums = [1,1,1,2,2,3],
Your function should return length
- Spring4新特性——Groovy Bean定义DSL
jinnianshilongnian
spring 4
Spring4新特性——泛型限定式依赖注入
Spring4新特性——核心容器的其他改进
Spring4新特性——Web开发的增强
Spring4新特性——集成Bean Validation 1.1(JSR-349)到SpringMVC
Spring4新特性——Groovy Bean定义DSL
Spring4新特性——更好的Java泛型操作API
Spring4新
- CentOS安装Mysql5.5
liuxingguome
centos
CentOS下以RPM方式安装MySQL5.5
首先卸载系统自带Mysql:
yum remove mysql mysql-server mysql-libs compat-mysql51
rm -rf /var/lib/mysql
rm /etc/my.cnf
查看是否还有mysql软件:
rpm -qa|grep mysql
去http://dev.mysql.c
- 第14章 工具函数(下)
onestopweb
函数
index.html
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/
- POJ 1050
SaraWon
二维数组子矩阵最大和
POJ ACM第1050题的详细描述,请参照
http://acm.pku.edu.cn/JudgeOnline/problem?id=1050
题目意思:
给定包含有正负整型的二维数组,找出所有子矩阵的和的最大值。
如二维数组
0 -2 -7 0
9 2 -6 2
-4 1 -4 1
-1 8 0 -2
中和最大的子矩阵是
9 2
-4 1
-1 8
且最大和是15
- [5]设计模式——单例模式
tsface
java单例设计模式虚拟机
单例模式:保证一个类仅有一个实例,并提供一个访问它的全局访问点
安全的单例模式:
/*
* @(#)Singleton.java 2014-8-1
*
* Copyright 2014 XXXX, Inc. All rights reserved.
*/
package com.fiberhome.singleton;
- Java8全新打造,英语学习supertool
yangshangchuan
javasuperword闭包java8函数式编程
superword是一个Java实现的英文单词分析软件,主要研究英语单词音近形似转化规律、前缀后缀规律、词之间的相似性规律等等。Clean code、Fluent style、Java8 feature: Lambdas, Streams and Functional-style Programming。
升学考试、工作求职、充电提高,都少不了英语的身影,英语对我们来说实在太重要