- 洛谷P2865 [USACO06NOV] Roadblocks G【C++解法】【次短路问题】
#Dong#
c++算法数据结构图论
/*求次短路问题【spfa解法】本题思路:1.用spfa做,用d1记录从1到n所有点距离点1的最短距离,用d2记录从n到1所有点距离点n的最短距离那么此时d1[n]即为1到n点的最短距离2.遍历每个顶点x,找到它们所指向的点y,利用d1[x](x距离1的最短距离)+d2[y](y距·离n的最短距离)+w[i](x和y的边的权值)因为次短路一定严格大于最短路,而且又是除了最短路以外最小的那个,所以利
- P2865 [USACO06NOV] Roadblocks G(洛谷)(次短路)
叶子清不青
算法
开一个二维数组dis[N][2]分别记录最短路和次短路即可。dijkstra和spfa均可,推荐spfa。//dijkstra#includeusingnamespacestd;constintN=1e5+5;typedeflonglongll;typedefpairPII;intn,m,k;intT;priority_queue,greater>q;structnode{inte,w;};vec
- python带空格的路径_使用带空格的路径调用脚本
weixin_39729784
python带空格的路径
我有一个GUI,并且正在使用一个按钮来调用python脚本。我pythonos.path.abspath(os.path.dirname(__file__))用来获取GUI脚本的目录,并进一步使用它来调用该目录的子文件夹中的脚本。我使用以下方法获取GUI的路径:sPfad=os.path.abspath(os.path.dirname(__file__))print(sPfad)T:\kst597
- DAY60-图论-Bellman_ford
No.Ada
LeetCode刷题手册图论
Bellman_ford队列优化算法(又名SPFA)publicstaticvoidmain(String[]args){Scannerscan=newScanner(System.in);intn=scan.nextInt();intm=scan.nextInt();//初始化List>edges=newArrayListtemp=newArrayListqueue=newLinkedListt
- 2022-01-14每日刷题打卡
你好_Ä
图论算法
2022-01-14每日刷题打卡AcWing——y总算法课851.spfa求最短路-AcWing题库给定一个n个点m条边的有向图,图中可能存在重边和自环,边权可能为负数。请你求出1号点到n号点的最短距离,如果无法从1号点走到n号点,则输出impossible。数据保证不存在负权回路。输入格式第一行包含整数n和m。接下来m行每行包含三个整数x,y,z,表示存在一条从点x到点y的有向边,边长为z。输出
- 刷题Day64|Floyd 算法精讲:97. 小明逛公园、A * 算法精讲:127. 骑士的攻击
风啊雨
算法
Floyd算法精讲解决多源最短路问题,即求多个起点到多个终点的多条最短路径。dijkstra朴素版、dijkstra堆优化、Bellman算法、Bellman队列优化(SPFA)都是单源最短路,即只能有一个起点。Floyd算法对边的权值正负没有要求,都可以处理。思路:核心思想是动态规划。分两种情况:(1)节点i到节点j的最短路径经过节点k:grid[i][j][k]=grid[i][k][k-1]
- 代码随想录算法训练营Day61 || 图论part 10
傲世尊
图论
Bellman_ford队列优化算法:又叫做SPFA,在做松弛操作时,只更新以目前操作节点为出发点能到达的节点的minDist,避免多余操作。判断负权回路:如果有负权回路,进行第n次松弛的时候,minDist数组会有变化。最多经过k个城市,那么就对所有边进行k+1次松弛即可。
- Dijkstra算法C++
江淮子弟
算法刷刷刷算法c++图论数据结构贪心算法
系列文章目录Dijkstra算法Ballman_ford算法Spfa算法Floyd算法文章目录系列文章目录一、朴素版本二、堆优化版本总结一、朴素版本时间复杂度:$O(n^2)$数据量比较密集时:数据存储用邻接矩阵g[][]较大值MAX选用0x3f3f3f3f:32bit中通常int最大值为0x7fffffff,但是此处需要对MAX进行加法,0x7fffffff+3为负数,显然不符合最短路径算法中的
- 算法基础系列第三章——图论之最短路径问题
杨枝
算法基础图论算法dijkstrabellman–fordalgorithm
详解蓝桥图论之最短路径问题关于图论知识铺垫图的定义邻接矩阵邻接表最短路算法总大纲dijkstra算法朴素版dijsktra算法(适用于稠密图)例题描述参考代码(C++版本)算法模板细节落实堆优化版dijkstra算法(适用于稀疏图)例题描述参考实现代码(C++版本)算法模板细节落实bellman-ford算法例题描述——有边数限制的最短路参考代码(C++版本)算法模板细节落实SPFA算法例题描述参
- 【备战蓝桥杯】 算法·每日一题(详解+多解)-- day11
苏州程序大白
365天大战算法算法蓝桥杯图论数据结构C++
【备战蓝桥杯】算法·每日一题(详解+多解)--day11✨博主介绍前言Dijkstra算法流程网络延迟时间解题思路Bellman-Ford算法流程K站内最便宜的航班解题思路SPFA算法K站内最便宜的航班解题思路具有最大概率的路径解题思路Floyd算法找到阈值距离内邻居数量最少的城市解题思路Johnson全源最短路径算法正确性证明解题思路点击直接资料领取✨博主介绍作者主页:苏州程序大白作者简介:CS
- 备战蓝桥杯—有边数限制的最短路 (bellman_ford+)——[AcWing]有边数限制的最短路
Joanh_Lan
备战蓝桥杯蓝桥杯图论算法acm竞赛
因为近期在学图,所以顺带的写一篇最短路的备战蓝桥杯文章。最短路(单源)所有边权都为正数有两种算法:1.朴素DijkstraO(n^2)2.堆优化的DijkstraO(mlogn)存在负权边有两种算法:1.Bellman-FordO(nm)2.SPFA一般O(m),最坏O(nm)今天,我来介绍一下Bellman-Ford(存在负权+有边数限制)存在负权且有边数限制——》Bellman-Ford(在我
- 课上题目代码
顾客言
c++图论最短路
dijkstra和spfa区别:dikstra是基于贪心的思想,每次选择最近的点去更新其它点,过后就不再访问。而在spfa算法中,只要有某个点的距离被更新了,就把它加到队列中,去更新其它点,所有每个点有被重复加入队列的可能。或者跟具体的说区别在于diikstra总是要找到dist最小的元素来作为父节点更新其他点,而不是直接取队头元素(当然如果是优先队列也是取队头元素):更新的顺序不同主要导致的差异
- 算法刷题day13
lijiachang030718
#算法刷题算法动态规划
目录引言一、蜗牛引言今天时间有点紧,只搞了一道题目,不过确实搞了三个小时,才搞完,主要是也有点晚了,也好累啊,不过也还是可以的,学了状态DP,把建图和spfa算法熟悉了一下,明天再接再厉。一、蜗牛标签:状态机DP思路1:这个因为还没学所以第一时间没有这个DP的概念就拿最短路做的,spfa算法过了两个数据(总共十个),然后其实没问题,就是图建的不太完善,建图是觉得每次传送结束都要回到x轴,现在觉得可
- 找负环(图论基础)
wa的一声哭了
图论SPFA图论springbootfastapidjangoflasknumpyspring
文章目录负环spfa找负环方法一方法二实际效果负环环内路径上的权值和为负。spfa找负环两种基本的方法统计每一个点的入队次数,如果一个点入队了n次,则说明存在负环统计当前每个点中的最短路中所包含的边数,如果当前某个点的最短路所包含的边数大于等于n,也说明存在负环实际上两种方法是等价的,都是判断是否路径包含n条边,nnn条边的话就有n+1n+1n+1个点用的更多的还是第二种方法。方法一cnt[x]:
- 最短路问题模版总结
Jared_devin
最短路问题Acwing算法c++图论数据结构宽度优先动态规划深度优先
目录思维导图Dijkstra(朴素)思路:代码如下:Dijkstra(堆优化)代码如下:Bellman-Ford思路:对于串联效应的解释:(也就是为什么需要备份数组)代码如下:SPFA思路:为什么和BF算法的判断不一样:代码如下:SPFA判负环思路:代码如下:Floyd编辑思路:代码如下:复习小结~~符号:n为点数,m为边数思维导图(来自y总)注:1.朴素Dijkstra适用于稠密图,堆优化Dij
- 2.13学习总结
啊这泪目了
学习
1.出差(Bleeman—ford)(spfa)(dijkstra)2.最小生成树(prim)(Kruskal)最短路问题:出差https://www.luogu.com.cn/problem/P8802题目描述AA国有�N个城市,编号为1…�1…N小明是编号为11的城市中一家公司的员工,今天突然接到了上级通知需要去编号为�N的城市出差。由于疫情原因,很多直达的交通方式暂时关闭,小明无法乘坐飞机直
- 【第二十二课】最短路:多源最短路floyd算法(acwing-852 spfa判断是否存在负环 / acwing-854 / c++代码)
爱写文章的小w
算法--学习笔记算法c++最短路
目录acwing-852代码如下一些解释acwing-854foyld算法思想代码如下一些解释acwing-852在spfa求最短路的算法基础上进行修改。代码如下#include#include#include#includeusingnamespacestd;constintN=2010,M=10010;intn,m;inth[N],e[M],ne[M],w[M],idx;intdist[N],
- 【第二十二课】最短路:bellman_ford / spfa算法 (acwing-851 / acwing-853 / c++代码)
爱写文章的小w
算法--学习笔记算法c++最短路
目录前言acwing-853bellman_ford算法的思想代码如下一些解释acwing-851spfa算法思想代码如下一些解释前言由于权重可以表示不同的度量,例如距离、时间、费用等,具体取决于问题的背景,因此会存在一些权值为负数的题目。也就是存在负权边的最短路问题。dijkstra算法由于每次都选择当前最短路径的节点进行扩展,并不能解决带有负权值的最短路问题。会存在如下图这样的问题根据dijk
- 图论 理论以及相关题目题解的小结
芋圆西米露
【图论】吸吸吸国宝镇帖目录【图论】理论题解【搜索】【并查集】【最小生成树】【最短路】【拓扑排序】【二叉树】【简单图】【最小割】理论图论入门一图论入门二图论入门三图论入门四图论入门五图论入门六图论入门七-最小生成树图论入门八-Kruskal算法图论入门九-Prim算法求最短路径的四种方法(Dijkstra,Floyd,Bellman-Ford,SPFA算法)并查集入门(普通并查集+带删除并查集+关系
- BZOJ 1975 SDOI2010 魔法猪学院 A*k短路
PoPoQQQ
可并堆BZOJA*BZOJBZOJ1975A-stark短路
题目大意:给定一个值E求起点到终点的最多条路径使长度之和不超过Ek短路的A*算法……每个点有一个估价函数=g[x]+h[x]其中g[x]是从源点出发已经走了的长度h[x]是从这个点到汇点的最短路首先先在反图上跑一遍SPFA求出每个点的h[x],然后将源点的g[x]+h[x]加入堆每次取出堆顶时将堆顶的g[x]向所连接的边扩展第k次取出汇点即是答案其中有一个剪枝就是当第k+1次取出某个点时不继续拓展
- 第三章 搜索与图论(二)(最短路)
一只程序媛li
蓝桥准备图论算法
一、最短路问题1、对于稠密图,由于朴素版的dijkstra算法与边数无关使用这种算法的复杂度较低。稀疏图用堆优化版的算法;单源最短路中存在负权边用SPFA算法通常较好;多源用floyd算法;难点:如何建图,抽象为最短路问题。二、朴素版dijkstra算法由于稠密图用这种算法,邻接矩阵存图,注意把g初始化为0x3f;st保存每个数组的状态,#include//849dijkstra最短路usingn
- WEB-HTTP协议
晗神
http网络协议网络网络安全web安全开发语言tcp/ip
一、概述工作在应用层,通过HTTP实现数据在internet上发生和接受。HTTP使用TCP协议二、URL统一资源定位符Eg:http://www.aaspfans.com:8080/news/index.asp?boardID=5&page=1#name协议部分+域名/ip地址+端口+虚拟目录+文件名+参数+锚部分三、HTTP:报文:开始行+首部+空行+主体请求报文:user-agent:maz
- OSPF的拓展配置
보고.싶다
网络
一:OSPF的拓展配置1:手工认证---OSPF邻居双方,发送的所有的数据报中包含认证信息,两边口令相同,则代表认证成功;不同,则认证失败,将影响邻居关系建立。2:接口认证[r1-GigabitEthernet0/0/0]ospfauthentication-modemd51cipher1234563:区域认证---本质还是接口认证,相当于,将一台设备在某个区域内所有激活的接口配置接口认证。[r4
- 2023年 HCIP-Datacom(H12-821)最新题库
IT考试认证
华为考试认证智能路由器网络
最新HCIP-Datacom(H12-821)完整题库请扫描上方二维码访问,持续更新中。1.关于OSPFAS-External-LSA说法正确的是:A.Netmask被设置全0B.LinkStateID被设置为目的网段地址C.AdvertisingRouter被设置为ASBR的RouterIDD.使用LinkStateID和AdvertisingRouter可以唯一标识一条AS-External-
- 第四章 图论(4):SPFA求负环、差分约束、LCA
路哞哞
算法笔记图论算法LCA
目录一、SPFA求负环1.0SPFA判断负环1.1虫洞1.2观光奶牛(spfa&&01分数规划)1.3单词环二、差分约束2.1糖果2.2区间2.3排队布局2.4雇佣收银员2.5再卖菜三、最近公共祖先(LCA)3.1祖孙询问(倍增法)3.2距离(Tarjan算法)3.3次小生成树3.4暗之连锁一、SPFA求负环一般会和01分数规划结合负环:一个环且环上所有权值之和小于零负环对最短路径的影响:如果在求
- AcWing 1170. 排队布局 题解(spfa求负环解决约束差分)
QingQingDE23
#负环图论图论算法
AcWing1170.排队布局这里要注意求的是最大值,所以要用最短路,建图的时候也是从大于号指向小于号大佬题解#includeusingnamespacestd;constintN=1010,M=3e4+10,INF=0x3f3f3f3f;intn,m;inth[N],e[M],ne[M],w[M],idx;intdist[N];boolst[N];intcnt[N];intq[N];voidad
- spfa处理差分约束
钊气蓬勃.
c++算法蓝桥杯
差分约束是一群不等关系然后求可行解或者最小值最大值的情况1.求最大值,用最短路,也就是符号要(a)>=(b)+cadd(b,a,c)2.求最小值,用最长路,也就是符号要(a)=b且b>=ax==2说明b>a则b>=a+1x==3说明a>=bx==4说明a>b则a>=b+1x==5说明b>=a因为保证每个小孩都有一个糖果,则每个小孩>=0+1#includeusingnamespacestd;con
- 负环与差分约束
「已注销」
ACM--图论
文章目录负环与差分约束1.基本概念、方法1.1负环1.1.1spfa判负环/正环1.1.2tarjan+缩点判断正环/负环1.1.3拓扑排序判断正环/负环1.2差分约束2.例题2.1负环/正环判定2.1.1spfa判断负环/正环2.1.2tarjan求scc+缩点判断正环/负环2.1.3拓扑排序判断正环/负环2.2差分约束2.2.1spfa差分约束2.2.2tarjan求scc+缩点+dp差分约束
- BZOJ1731: [Usaco2005 dec]Layout 排队布局 差分约束 spfa
Oakley_
BZOJ差分约束spfa
差分约束:最大距离最短路,最小距离最长路最短路的三角不等式:d[i]-d[j]j)物理意义:j,i之间的距离为D,而d[i]-d[j]一定=D(j>i)物理意义:j,i之间的距离为D,而d[i]-d[j]一定>=D,所以求得是最长路建图:j向i连接一条权值为D的边1.题目中说牛的顺序和编号顺序一致,即需要满足d[i]-d[i-1]>=0;转化一下d[i-1]-d[i]=d[x]+D;转化一下d[x
- bzoj1731 [Usaco2005 dec]Layout 排队布局(差分约束+spfa)
Icefox_zhx
bzoj差分约束最短路
这题我觉得应该先判有没有负环啊。。。如果1和n不连通,我们从1开始做spfa,如果n在一个负环中呢?我们就判断不到这个负环了啊。。我们会输出-2,可是我觉得应该是-1,根本不存在合法方案啊。。。迷。我先用dfs判负环的程序在bzoj上跑了2900+ms,可怕。。不判的话才20ms。。不过话说dfs版spfa判负环也不会慢这么多啊。。待我研究下。#include#include#includeusi
- 桌面上有多个球在同时运动,怎么实现球之间不交叉,即碰撞?
换个号韩国红果果
html小球碰撞
稍微想了一下,然后解决了很多bug,最后终于把它实现了。其实原理很简单。在每改变一个小球的x y坐标后,遍历整个在dom树中的其他小球,看一下它们与当前小球的距离是否小于球半径的两倍?若小于说明下一次绘制该小球(设为a)前要把他的方向变为原来相反方向(与a要碰撞的小球设为b),即假如当前小球的距离小于球半径的两倍的话,马上改变当前小球方向。那么下一次绘制也是先绘制b,再绘制a,由于a的方向已经改变
- 《高性能HTML5》读后整理的Web性能优化内容
白糖_
html5
读后感
先说说《高性能HTML5》这本书的读后感吧,个人觉得这本书前两章跟书的标题完全搭不上关系,或者说只能算是讲解了“高性能”这三个字,HTML5完全不见踪影。个人觉得作者应该首先把HTML5的大菜拿出来讲一讲,再去分析性能优化的内容,这样才会有吸引力。因为只是在线试读,没有机会看后面的内容,所以不胡乱评价了。
- [JShop]Spring MVC的RequestContextHolder使用误区
dinguangx
jeeshop商城系统jshop电商系统
在spring mvc中,为了随时都能取到当前请求的request对象,可以通过RequestContextHolder的静态方法getRequestAttributes()获取Request相关的变量,如request, response等。 在jshop中,对RequestContextHolder的
- 算法之时间复杂度
周凡杨
java算法时间复杂度效率
在
计算机科学 中,
算法 的时间复杂度是一个
函数 ,它定量描述了该算法的运行时间。这是一个关于代表算法输入值的
字符串 的长度的函数。时间复杂度常用
大O符号 表述,不包括这个函数的低阶项和首项系数。使用这种方式时,时间复杂度可被称为是
渐近 的,它考察当输入值大小趋近无穷时的情况。
这样用大写O()来体现算法时间复杂度的记法,
- Java事务处理
g21121
java
一、什么是Java事务 通常的观念认为,事务仅与数据库相关。 事务必须服从ISO/IEC所制定的ACID原则。ACID是原子性(atomicity)、一致性(consistency)、隔离性(isolation)和持久性(durability)的缩写。事务的原子性表示事务执行过程中的任何失败都将导致事务所做的任何修改失效。一致性表示当事务执行失败时,所有被该事务影响的数据都应该恢复到事务执行前的状
- Linux awk命令详解
510888780
linux
一. AWK 说明
awk是一种编程语言,用于在linux/unix下对文本和数据进行处理。数据可以来自标准输入、一个或多个文件,或其它命令的输出。它支持用户自定义函数和动态正则表达式等先进功能,是linux/unix下的一个强大编程工具。它在命令行中使用,但更多是作为脚本来使用。
awk的处理文本和数据的方式:它逐行扫描文件,从第一行到
- android permission
布衣凌宇
Permission
<uses-permission android:name="android.permission.ACCESS_CHECKIN_PROPERTIES" ></uses-permission>允许读写访问"properties"表在checkin数据库中,改值可以修改上传
<uses-permission android:na
- Oracle和谷歌Java Android官司将推迟
aijuans
javaoracle
北京时间 10 月 7 日,据国外媒体报道,Oracle 和谷歌之间一场等待已久的官司可能会推迟至 10 月 17 日以后进行,这场官司的内容是 Android 操作系统所谓的 Java 专利权之争。本案法官 William Alsup 称根据专利权专家 Florian Mueller 的预测,谷歌 Oracle 案很可能会被推迟。 该案中的第二波辩护被安排在 10 月 17 日出庭,从目前看来
- linux shell 常用命令
antlove
linuxshellcommand
grep [options] [regex] [files]
/var/root # grep -n "o" *
hello.c:1:/* This C source can be compiled with:
- Java解析XML配置数据库连接(DOM技术连接 SAX技术连接)
百合不是茶
sax技术Java解析xml文档dom技术XML配置数据库连接
XML配置数据库文件的连接其实是个很简单的问题,为什么到现在才写出来主要是昨天在网上看了别人写的,然后一直陷入其中,最后发现不能自拔 所以今天决定自己完成 ,,,,现将代码与思路贴出来供大家一起学习
XML配置数据库的连接主要技术点的博客;
JDBC编程 : JDBC连接数据库
DOM解析XML: DOM解析XML文件
SA
- underscore.js 学习(二)
bijian1013
JavaScriptunderscore
Array Functions 所有数组函数对参数对象一样适用。1.first _.first(array, [n]) 别名: head, take 返回array的第一个元素,设置了参数n,就
- plSql介绍
bijian1013
oracle数据库plsql
/*
* PL/SQL 程序设计学习笔记
* 学习plSql介绍.pdf
* 时间:2010-10-05
*/
--创建DEPT表
create table DEPT
(
DEPTNO NUMBER(10),
DNAME NVARCHAR2(255),
LOC NVARCHAR2(255)
)
delete dept;
select
- 【Nginx一】Nginx安装与总体介绍
bit1129
nginx
启动、停止、重新加载Nginx
nginx 启动Nginx服务器,不需要任何参数u
nginx -s stop 快速(强制)关系Nginx服务器
nginx -s quit 优雅的关闭Nginx服务器
nginx -s reload 重新加载Nginx服务器的配置文件
nginx -s reopen 重新打开Nginx日志文件
- spring mvc开发中浏览器兼容的奇怪问题
bitray
jqueryAjaxspringMVC浏览器上传文件
最近个人开发一个小的OA项目,属于复习阶段.使用的技术主要是spring mvc作为前端框架,mybatis作为数据库持久化技术.前台使用jquery和一些jquery的插件.
在开发到中间阶段时候发现自己好像忽略了一个小问题,整个项目一直在firefox下测试,没有在IE下测试,不确定是否会出现兼容问题.由于jquer
- Lua的io库函数列表
ronin47
lua io
1、io表调用方式:使用io表,io.open将返回指定文件的描述,并且所有的操作将围绕这个文件描述
io表同样提供三种预定义的文件描述io.stdin,io.stdout,io.stderr
2、文件句柄直接调用方式,即使用file:XXX()函数方式进行操作,其中file为io.open()返回的文件句柄
多数I/O函数调用失败时返回nil加错误信息,有些函数成功时返回nil
- java-26-左旋转字符串
bylijinnan
java
public class LeftRotateString {
/**
* Q 26 左旋转字符串
* 题目:定义字符串的左旋转操作:把字符串前面的若干个字符移动到字符串的尾部。
* 如把字符串abcdef左旋转2位得到字符串cdefab。
* 请实现字符串左旋转的函数。要求时间对长度为n的字符串操作的复杂度为O(n),辅助内存为O(1)。
*/
pu
- 《vi中的替换艺术》-linux命令五分钟系列之十一
cfyme
linux命令
vi方面的内容不知道分类到哪里好,就放到《Linux命令五分钟系列》里吧!
今天编程,关于栈的一个小例子,其间我需要把”S.”替换为”S->”(替换不包括双引号)。
其实这个不难,不过我觉得应该总结一下vi里的替换技术了,以备以后查阅。
1
所有替换方案都要在冒号“:”状态下书写。
2
如果想将abc替换为xyz,那么就这样
:s/abc/xyz/
不过要特别
- [轨道与计算]新的并行计算架构
comsci
并行计算
我在进行流程引擎循环反馈试验的过程中,发现一个有趣的事情。。。如果我们在流程图的每个节点中嵌入一个双向循环代码段,而整个流程中又充满着很多并行路由,每个并行路由中又包含着一些并行节点,那么当整个流程图开始循环反馈过程的时候,这个流程图的运行过程是否变成一个并行计算的架构呢?
- 重复执行某段代码
dai_lm
android
用handler就可以了
private Handler handler = new Handler();
private Runnable runnable = new Runnable() {
public void run() {
update();
handler.postDelayed(this, 5000);
}
};
开始计时
h
- Java实现堆栈(list实现)
datageek
数据结构——堆栈
public interface IStack<T> {
//元素出栈,并返回出栈元素
public T pop();
//元素入栈
public void push(T element);
//获取栈顶元素
public T peek();
//判断栈是否为空
public boolean isEmpty
- 四大备份MySql数据库方法及可能遇到的问题
dcj3sjt126com
DBbackup
一:通过备份王等软件进行备份前台进不去?
用备份王等软件进行备份是大多老站长的选择,这种方法方便快捷,只要上传备份软件到空间一步步操作就可以,但是许多刚接触备份王软件的客用户来说还原后会出现一个问题:因为新老空间数据库用户名和密码不统一,网站文件打包过来后因没有修改连接文件,还原数据库是好了,可是前台会提示数据库连接错误,网站从而出现打不开的情况。
解决方法:学会修改网站配置文件,大多是由co
- github做webhooks:[1]钩子触发是否成功测试
dcj3sjt126com
githubgitwebhook
转自: http://jingyan.baidu.com/article/5d6edee228c88899ebdeec47.html
github和svn一样有钩子的功能,而且更加强大。例如我做的是最常见的push操作触发的钩子操作,则每次更新之后的钩子操作记录都会在github的控制板可以看到!
工具/原料
github
方法/步骤
- ">的作用" target="_blank">JSP中的作用
蕃薯耀
JSP中<base href="<%=basePath%>">的作用
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
- linux下SAMBA服务安装与配置
hanqunfeng
linux
局域网使用的文件共享服务。
一.安装包:
rpm -qa | grep samba
samba-3.6.9-151.el6.x86_64
samba-common-3.6.9-151.el6.x86_64
samba-winbind-3.6.9-151.el6.x86_64
samba-client-3.6.9-151.el6.x86_64
samba-winbind-clients
- guava cache
IXHONG
cache
缓存,在我们日常开发中是必不可少的一种解决性能问题的方法。简单的说,cache 就是为了提升系统性能而开辟的一块内存空间。
缓存的主要作用是暂时在内存中保存业务系统的数据处理结果,并且等待下次访问使用。在日常开发的很多场合,由于受限于硬盘IO的性能或者我们自身业务系统的数据处理和获取可能非常费时,当我们发现我们的系统这个数据请求量很大的时候,频繁的IO和频繁的逻辑处理会导致硬盘和CPU资源的
- Query的开始--全局变量,noconflict和兼容各种js的初始化方法
kvhur
JavaScriptjquerycss
这个是整个jQuery代码的开始,里面包含了对不同环境的js进行的处理,例如普通环境,Nodejs,和requiredJs的处理方法。 还有jQuery生成$, jQuery全局变量的代码和noConflict代码详解 完整资源:
http://www.gbtags.com/gb/share/5640.htm jQuery 源码:
(
- 美国人的福利和中国人的储蓄
nannan408
今天看了篇文章,震动很大,说的是美国的福利。
美国医院的无偿入院真的是个好措施。小小的改善,对于社会是大大的信心。小孩,税费等,政府不收反补,真的体现了人文主义。
美国这么高的社会保障会不会使人变懒?答案是否定的。正因为政府解决了后顾之忧,人们才得以倾尽精力去做一些有创造力,更造福社会的事情,这竟成了美国社会思想、人
- N阶行列式计算(JAVA)
qiuwanchi
N阶行列式计算
package gaodai;
import java.util.List;
/**
* N阶行列式计算
* @author 邱万迟
*
*/
public class DeterminantCalculation {
public DeterminantCalculation(List<List<Double>> determina
- C语言算法之打渔晒网问题
qiufeihu
c算法
如果一个渔夫从2011年1月1日开始每三天打一次渔,两天晒一次网,编程实现当输入2011年1月1日以后任意一天,输出该渔夫是在打渔还是在晒网。
代码如下:
#include <stdio.h>
int leap(int a) /*自定义函数leap()用来指定输入的年份是否为闰年*/
{
if((a%4 == 0 && a%100 != 0
- XML中DOCTYPE字段的解析
wyzuomumu
xml
DTD声明始终以!DOCTYPE开头,空一格后跟着文档根元素的名称,如果是内部DTD,则再空一格出现[],在中括号中是文档类型定义的内容. 而对于外部DTD,则又分为私有DTD与公共DTD,私有DTD使用SYSTEM表示,接着是外部DTD的URL. 而公共DTD则使用PUBLIC,接着是DTD公共名称,接着是DTD的URL.
私有DTD
<!DOCTYPErootSYST