- 人工智能福利站,初识人工智能,机器学习,第三课
普修罗双战士
人工智能专栏人工智能机器学习
作者简介,普修罗双战士,一直追求不断学习和成长,在技术的道路上持续探索和实践。多年互联网行业从业经验,历任核心研发工程师,项目技术负责人。欢迎点赞✍评论⭐收藏人工智能领域知识链接专栏人工智能专业知识学习一机器学习专栏人工智能专业知识学习二机器学习专栏人工智能专业知识学习三机器学习专栏文章目录初识人工智能(机器学习)一、机器学习(3)21.什么是K近邻(KNN)算法?22.什么是逻辑回归?23.什么
- 人工智能福利站,初识人工智能,机器学习,第四课
普修罗双战士
人工智能专栏人工智能机器学习
作者简介,普修罗双战士,一直追求不断学习和成长,在技术的道路上持续探索和实践。多年互联网行业从业经验,历任核心研发工程师,项目技术负责人。欢迎点赞✍评论⭐收藏人工智能领域知识链接专栏人工智能专业知识学习一机器学习专栏人工智能专业知识学习二机器学习专栏人工智能专业知识学习三机器学习专栏人工智能专业知识学习四机器学习专栏文章目录初识人工智能(机器学习)一、机器学习(4)31.什么是聚类算法中的层次聚类
- 人工智能福利站,初识人工智能,机器学习,第二课
普修罗双战士
人工智能专栏人工智能机器学习
作者简介,普修罗双战士,一直追求不断学习和成长,在技术的道路上持续探索和实践。多年互联网行业从业经验,历任核心研发工程师,项目技术负责人。欢迎点赞✍评论⭐收藏人工智能领域知识链接专栏人工智能专业知识学习一机器学习专栏人工智能专业知识学习二机器学习专栏文章目录初识人工智能(机器学习)一、机器学习(2)11.什么是特征选择和特征提取?12.解释一下正则化。13.什么是ROC曲线和AUC?14.什么是混
- 人工智能福利站,初识人工智能,机器学习,第六课
普修罗双战士
人工智能专栏人工智能机器学习自然语言处理
作者简介,普修罗双战士,一直追求不断学习和成长,在技术的道路上持续探索和实践。多年互联网行业从业经验,历任核心研发工程师,项目技术负责人。欢迎点赞✍评论⭐收藏人工智能领域知识链接专栏人工智能专业知识学习一机器学习专栏人工智能专业知识学习二机器学习专栏人工智能专业知识学习三机器学习专栏人工智能专业知识学习四机器学习专栏人工智能专业知识学习五机器学习专栏人工智能专业知识学习六机器学习专栏文章目录初识人
- 人工智能福利站,初识人工智能,机器学习,第五课
普修罗双战士
人工智能专栏人工智能机器学习机器人
作者简介,普修罗双战士,一直追求不断学习和成长,在技术的道路上持续探索和实践。多年互联网行业从业经验,历任核心研发工程师,项目技术负责人。欢迎点赞✍评论⭐收藏人工智能领域知识链接专栏人工智能专业知识学习一机器学习专栏人工智能专业知识学习二机器学习专栏人工智能专业知识学习三机器学习专栏人工智能专业知识学习四机器学习专栏人工智能专业知识学习五机器学习专栏文章目录初识人工智能(机器学习)一、机器学习(5
- 机器学习第12天:聚类
Nowl
机器学习机器学习人工智能聚类
文章目录机器学习专栏无监督学习介绍聚类K-Means使用方法实例演示代码解析绘制决策边界本章总结机器学习专栏机器学习_Nowl的博客-CSDN博客无监督学习介绍某位著名计算机科学家有句话:“如果智能是蛋糕,无监督学习将是蛋糕本体,有监督学习是蛋糕上的糖霜,强化学习是蛋糕上的樱桃”现在的人工智能大多数应用有监督学习,但无监督学习的世界也是广阔的,因为如今大部分的数据都是没有标签的上一篇文章讲到的降维
- 机器学习第11天:降维
Nowl
机器学习机器学习人工智能
文章目录机器学习专栏主要思想主流方法1.投影二维投射到一维三维投射到二维2.流形学习一、PCA主成分分析介绍代码二、三内核PCA具体代码三、LLE结语机器学习专栏机器学习_Nowl的博客-CSDN博客主要思想介绍:当一个任务有很多特征时,我们找到最主要的,剔除不重要的主流方法1.投影投影是指找到一个比当前维度低的维度面(或线),这个维度面或线离当前所有点的距离最小,然后将当前维度投射到小维度上二维
- 机器学习第10天:集成学习
Nowl
机器学习机器学习集成学习人工智能
文章目录机器学习专栏介绍投票分类器介绍代码核心代码示例代码软投票与硬投票bagging与pasting介绍核心代码随机森林介绍代码结语机器学习专栏机器学习_Nowl的博客-CSDN博客介绍集成学习的思想是很直观的:多个人判断的结合往往比一个人的想法好我们将在下面介绍几种常见的集成学习思想与方法投票分类器介绍假如我们有一个分类任务,我们训练了多个模型:逻辑回归模型,SVM分类器,决策树分类器,然后我
- 机器学习第8天:SVM分类
Nowl
机器学习机器学习支持向量机分类
文章目录机器学习专栏介绍特征缩放示例代码硬间隔与软间隔分类主要代码代码解释非线性SVM分类结语机器学习专栏机器学习_Nowl的博客-CSDN博客介绍作用:判别种类原理:找出一个决策边界,判断数据所处区域来识别种类简单介绍一下SVM分类的思想,我们看下面这张图,两种分类都很不错,但是我们可以注意到第二种的决策边界与实例更远(它们之间的距离比较宽),而SVM分类就是一种寻找距每种实例最远的决策边界的算
- 机器学习第9天:决策树分类
Nowl
机器学习机器学习决策树分类
文章目录机器学习专栏介绍基本思想使用代码深度探索优点估计概率训练算法CART成本函数实例数与不纯度正则化在鸢尾花数据集上训练决策树机器学习专栏机器学习_Nowl的博客-CSDN博客介绍作用:分类原理:构建一个二叉树,逐级条件判断筛选基本思想假如有小明,小红和小张三个人,我们知道他们的身高体重,要通过身高体重来判断是哪个人,决策树算法会构建一个二叉树,逐级判断,如下使用代码fromsklearn.t
- 【机器学习Python实战】线性回归
为梦而生~
机器学习python实战机器学习python线性回归
个人主页:为梦而生~关注我一起学习吧!专栏:机器学习python实战欢迎订阅!后面的内容会越来越有意思~⭐内容说明:本专栏主要针对机器学习专栏的基础内容进行python的实现,部分基础知识不再讲解,有需要的可以点击专栏自取~往期推荐(机器学习基础专栏):【机器学习基础】机器学习入门(1)【机器学习基础】机器学习入门(2)【机器学习基础】机器学习的基本术语【机器学习基础】机器学习的模型评估(评估方法
- 机器学习——k-均值算法(聚类)
Tao_RY
机器学习专栏k-means聚类三维聚类
前言:有三维聚类图,我只是一个代码的搬运工。。。机器学习专栏:机器学习专栏文章目录k-均值(k-means)聚类1、k-均值算法2、k-均值算法的代价函数3、k-均值算法步骤4、初始化聚类中心点和聚类个数5、sklearn实现k-means算法k-均值(k-means)聚类1、k-均值算法k-均值算法是一种无监督学习,是一种“基于原型的聚类”(prototype-basedclustering)方
- 【零基础学机器学习 4】机器学习中的回归-线性回归
程序员半夏
零基础学机器学习机器学习人工智能python
作者简介:程序员半夏,一名全栈程序员,擅长使用各种编程语言和框架,如JavaScript、React、Node.js、Java、Python、Django、MySQL等.专注于大前端与后端的硬核干货分享,同时是一个随缘更新的UP主.你可以在各个平台找到我!本文收录于专栏:零基础学机器学习专栏介绍:本专栏将帮助您了解机器学习、其工作原理以及如何使用它。本教程包含以下内容:监督和无监督学习、线性回归
- 付费课程:路径规划、机器学习、运筹优化算法以及数据分析领域
且行且安~
付费课程付费课程路径规划机器学习数据分析
目录授课形式学习内容可包含附加内容教学价格授课形式线上课程,一对一教学学习内容可包含python从入门到精通matlab入门及保姆级程序调试方法cplex入门到精通运筹学方面最优化理论-单纯形法、分支定界法、列生成法、切平面法机器学习方面机器学习专栏目录内容模型讲解TSP、VRP、VRPTW、多目标VRP、多式联运、选址问题、调度类问题等算法方面机器学习领域-支持向量机、随机森林等智能优化算法-遗
- 机器学习——特征缩放
Tao_RY
机器学习专栏正则化标准化特征缩放
前言:大多数模型都是直接给出公式,其实自己私下有推导,涉及好多自己不懂的数学知识,会一点点补充的机器学习专栏:机器学习专栏文章目录特征缩放1、特征缩放作用2、特征缩放的四种方式3、sklearn实现特征缩放特征缩放1、特征缩放作用面对特征数量较多的时候,保证这些特征具有相近的尺度(无量纲化),可以使梯度下降法更快的收敛。这两张图代表数据是否均一化的最优解寻解过程(左边是未归一化的),从这两张图可以
- 计算机图形学07:有效边表法的多边形扫描转换
非妃是公主
计算机图形学c++数据结构算法OpenGL图形渲染
作者:非妃是公主专栏:《计算机图形学》博客地址:https://blog.csdn.net/myf_666个性签:顺境不惰,逆境不馁,以心制境,万事可成。——曾国藩文章目录专栏推荐专栏系列文章序一、算法原理二、OpenGL代码实现三、效果展示theend……专栏推荐专栏名称专栏地址软件工程专栏——软件工程计算机图形学专栏——计算机图形学操作系统专栏——操作系统软件测试专栏——软件测试机器学习专栏—
- 计算机图形学08:中点BH算法绘制抛物线(100x = y^2)
非妃是公主
计算机图形学算法OpenGLc++图形渲染
作者:非妃是公主专栏:《计算机图形学》博客地址:https://blog.csdn.net/myf_666个性签:顺境不惰,逆境不馁,以心制境,万事可成。——曾国藩文章目录专栏推荐专栏系列文章序一、算法原理二、OpenGL代码实现三、效果展示theend……专栏推荐专栏名称专栏地址软件工程专栏——软件工程计算机图形学专栏——计算机图形学操作系统专栏——操作系统软件测试专栏——软件测试机器学习专栏—
- 计算机图形学01:直线生成算法(DDA算法)
非妃是公主
计算机图形学算法OpenGL图形渲染c++
作者:非妃是公主专栏:《计算机图形学》博客地址:https://blog.csdn.net/myf_666个性签:顺境不惰,逆境不馁,以心制境,万事可成。——曾国藩文章目录专栏推荐专栏系列文章序算法OpenGL代码缺点效果图theend……专栏推荐专栏名称专栏地址软件工程专栏——软件工程计算机图形学专栏——计算机图形学操作系统专栏——操作系统软件测试专栏——软件测试机器学习专栏——机器学习数据库专
- 机器学习专栏——(五)线性模型之基础概念
CheckOneA
机器学习机器学习人工智能算法
线性模型——基本概念 线性模型是机器学习中应用最广泛的模型,是通过样本特征的线性组合累进行预测的模型。假设有一个DDD维的样本x={x1,x2,...,xD}\bf{x}=\{x_1,x_2,...,x_D\}x={x1,x2,...,xD},其线性组合表示为f(x;w)=w1x1+w2x2+...+wDxD=wTx+bf({\bfx;w})=w_1x_1+w_2x_2+...+w_Dx_D
- 如何利用Bindsnet-Python模拟脉冲神经网络(SNN)?Part I. 建立一个网络
脑机接口研习社
机器学习与脑机接口神经网络机器学习人工智能python
微信公众号:脑机接口研习社关注脑机接口最新进展脑机接口研习社公众号即将开通机器学习专栏,从本篇文章开始,将介绍如何利用Bindsnet-Python包模拟脉冲神经网络(SNN)。一、脉冲神经网络(SNN)简介首先,我们来看什么是人工神经网络。人工神经网络(ArtificialNeuralNetwork,即ANN),是20世纪80年代以来人工智能领域兴起的研究热点。它从信息处理角度对人脑神经元网络进
- 一步步看α-β剪枝算法
大隐隐于野
最近在看人工智能的部分内容,这个α-β剪枝算法可是让我服了,看了PPT又看了网上好多blog,感觉一个也没讲清楚是怎么回事,什么上界下界上界小于下界的…现在终于搞明白是怎么一回事了。这篇blog实际上不应该出现在机器学习专栏里面的,因为不涉及任何数学的知识,主要是想从头到尾梳理一下这个的内容,最后的实现应该会放到编程笔记专栏里。封面:电影《龙猫》算法思想首先要说的是,alpha-beta剪枝建立在
- 机器学习专栏——(一)人工智能概述
CheckOneA
机器学习人工智能机器学习
第一部分人工智能概述一、人工智能相关人工智能(ArtificalIntelligence,AI):人工智能是计算机科学的一个分支,主要研究、开发和扩展人类智能的理论、方法、技术和应用系统等。JohnMcCarthy对其定义为:人工智能就是让机器的行为看起来表现的是人多表现出来的智能行为一样。人工智能涵盖许多的子学科,例如:机器感知(计算机视觉、语音信息处理)、学习(模式识别、机器学习、强化学习)、
- 机器学习——决策树(分类)
Tao_RY
机器学习专栏决策树机器学习分类
前言:内容参考周志华老师的《机器学习》,确实是一本好书,不过本科生读懂还是有很大难度的,大多数模型都是直接给出公式,其实自己私下有推导,涉及好多自己不懂的数学知识,会一点点补充的机器学习专栏:机器学习专栏文章目录一、决策树基本流程二、划分选择1、信息增益(ID3算法)2、信息增益率(C4.5算法)3、基尼指数(CART算法)三、剪枝处理1、预剪枝2、后剪枝三、连续与缺失值处理1、连续值处理2、缺失
- 机器学习——多元梯度下降法
Luo_LA
机器学习机器学习人工智能算法
一、多维特征模型目前为止,我们探讨了单变量/特征的回归模型(参考机器学习专栏中前面的文章),现在我们对房价模型增加更多的特征,例如房间数楼层等,构成一个含有多个变量的模型,模型中的特征为(x1,x2,...,xn)\left({x_{1}},{x_{2}},...,{x_{n}}\right)(x1,x2,...,xn)。增添更多特征后,我们引入一系列新的注释:nnn代表特征的数量x(i){x^{
- [从0开始机器学习]4.线性回归 正规方程
ζั͡ ั͡雾 ั͡狼 ั͡✾
机器学习笔记机器学习python人工智能线性回归正规方程
本博主博客:ζั͡ั͡雾ั͡狼ั͡✾的博客专栏:机器学习专栏:爬虫专栏:OpenCV图像识别处理专栏:Unity2D⭐本节课理论视频:P23-P25正规方程⭐本节课推荐其他人笔记:正规方程(Normalequations)推导过程_momentum_的博客机器学习通过文字描述是难以教学学会的,每一节课我会推荐这个理论的网课,一定要看上面的理论视频!一定要看上面的理论视频!一定要看上面的理论视频!所
- [从0开始机器学习]1.一元一次函数线性回归
ζั͡ ั͡雾 ั͡狼 ั͡✾
机器学习笔记机器学习python梯度下降法一元一次线性回归
本博主博客:ζั͡ั͡雾ั͡狼ั͡✾的博客专栏:机器学习专栏:爬虫专栏:OpenCV图像识别处理专栏:Unity2D⭐本节课理论视频:吴恩达P1-P4:机器学习理论概述吴恩达P5-P11:线性回归算法原理⭐推荐其他人笔记:【吴恩达机器学习笔记详解】第二章线性回归的过程机器学习通过文字描述是难以教学学会的,每一节课我会推荐这个理论的网课,一定要看上面的理论视频!一定要看上面的理论视频!一定要看上面的
- GoatGui邀你参加机器学习研讨班
GoatGui
机器学习python人工智能聚类回归
参与机器学习专栏限定免费学习群方式(以下2种皆可):扫描主海报活动页中机器学习专栏学习群的二维码入群.点击下图直接进入机器学习专栏活动页,并扫描二维码入群.具体活动细节,详见21天学习挑战赛主海报活动页.A.活动介绍CSDN与每一位学习者同行平台优质专栏作者带队精准学习精选高质量专栏学习资料活动期内限时免费学习此刻开启学习打卡之路,收获知识、赢取豪礼更能结交志同道合的博友B.作者本人简单介绍概要领
- 【一起入门DeepLearning】中科院深度学习_期末复习_梯度消失与梯度爆炸
vector<>
深度学习
专栏介绍:本栏目为“2022春季中国科学院大学王亮老师的深度学习”课程记录,这门课程与自然语言处理以及机器学习有部分知识点重合,重合的部分不再单独开博客记录了,有需要的读者可以移步自然语言处理专栏和机器学习专栏。如果感兴趣的话,就和我一起入门DL吧什么是梯度消失和梯度爆炸?激活函数的误差从输出层反向传播时每一层都要乘激活函数的导数,当激活函数的导数值小于1时,误差经过每一层传递都会不断衰减,当网络
- 【一起入门DeepLearning】中科院深度学习_期末复习题2018-2019第八题:注意力机制
vector<>
深度学习深度学习注意力机制
专栏介绍:本栏目为“2022春季中国科学院大学王亮老师的深度学习”课程记录,这门课程与自然语言处理以及机器学习有部分知识点重合,重合的部分不再单独开博客记录了,有需要的读者可以移步自然语言处理专栏和机器学习专栏。如果感兴趣的话,就和我一起入门DL吧2018-2019学年第二学期期末试题五、(10分)画出用于机器翻译(或者图像描述)的基于注意机制的编码器-解码器结构示意图,并简要描述注意机制的工作原
- 【一起入门DeepLearning】中科院深度学习_期末复习题2018-2019第三题:卷积计算
vector<>
深度学习深度学习CNN
专栏介绍:本栏目为“2022春季中国科学院大学王亮老师的深度学习”课程记录,这门课程与自然语言处理以及机器学习有部分知识点重合,重合的部分不再单独开博客记录了,有需要的读者可以移步自然语言处理专栏和机器学习专栏。如果感兴趣的话,就和我一起入门DL吧2018-2019学年第二学期期末试题输入图片尺寸为:3x128x128第一层卷积:96个大小为3的卷积核,步长为1第二层池化:96个大小为2的均值池化
- 怎么样才能成为专业的程序员?
cocos2d-x小菜
编程PHP
如何要想成为一名专业的程序员?仅仅会写代码是不够的。从团队合作去解决问题到版本控制,你还得具备其他关键技能的工具包。当我们询问相关的专业开发人员,那些必备的关键技能都是什么的时候,下面是我们了解到的情况。
关于如何学习代码,各种声音很多,然后很多人就被误导为成为专业开发人员懂得一门编程语言就够了?!呵呵,就像其他工作一样,光会一个技能那是远远不够的。如果你想要成为
- java web开发 高并发处理
BreakingBad
javaWeb并发开发处理高
java处理高并发高负载类网站中数据库的设计方法(java教程,java处理大量数据,java高负载数据) 一:高并发高负载类网站关注点之数据库 没错,首先是数据库,这是大多数应用所面临的首个SPOF。尤其是Web2.0的应用,数据库的响应是首先要解决的。 一般来说MySQL是最常用的,可能最初是一个mysql主机,当数据增加到100万以上,那么,MySQL的效能急剧下降。常用的优化措施是M-S(
- mysql批量更新
ekian
mysql
mysql更新优化:
一版的更新的话都是采用update set的方式,但是如果需要批量更新的话,只能for循环的执行更新。或者采用executeBatch的方式,执行更新。无论哪种方式,性能都不见得多好。
三千多条的更新,需要3分多钟。
查询了批量更新的优化,有说replace into的方式,即:
replace into tableName(id,status) values
- 微软BI(3)
18289753290
微软BI SSIS
1)
Q:该列违反了完整性约束错误;已获得 OLE DB 记录。源:“Microsoft SQL Server Native Client 11.0” Hresult: 0x80004005 说明:“不能将值 NULL 插入列 'FZCHID',表 'JRB_EnterpriseCredit.dbo.QYFZCH';列不允许有 Null 值。INSERT 失败。”。
A:一般这类问题的存在是
- Java中的List
g21121
java
List是一个有序的 collection(也称为序列)。此接口的用户可以对列表中每个元素的插入位置进行精确地控制。用户可以根据元素的整数索引(在列表中的位置)访问元素,并搜索列表中的元素。
与 set 不同,列表通常允许重复
- 读书笔记
永夜-极光
读书笔记
1. K是一家加工厂,需要采购原材料,有A,B,C,D 4家供应商,其中A给出的价格最低,性价比最高,那么假如你是这家企业的采购经理,你会如何决策?
传统决策: A:100%订单 B,C,D:0%
&nbs
- centos 安装 Codeblocks
随便小屋
codeblocks
1.安装gcc,需要c和c++两部分,默认安装下,CentOS不安装编译器的,在终端输入以下命令即可yum install gccyum install gcc-c++
2.安装gtk2-devel,因为默认已经安装了正式产品需要的支持库,但是没有安装开发所需要的文档.yum install gtk2*
3. 安装wxGTK
yum search w
- 23种设计模式的形象比喻
aijuans
设计模式
1、ABSTRACT FACTORY—追MM少不了请吃饭了,麦当劳的鸡翅和肯德基的鸡翅都是MM爱吃的东西,虽然口味有所不同,但不管你带MM去麦当劳或肯德基,只管向服务员说“来四个鸡翅”就行了。麦当劳和肯德基就是生产鸡翅的Factory 工厂模式:客户类和工厂类分开。消费者任何时候需要某种产品,只需向工厂请求即可。消费者无须修改就可以接纳新产品。缺点是当产品修改时,工厂类也要做相应的修改。如:
- 开发管理 CheckLists
aoyouzi
开发管理 CheckLists
开发管理 CheckLists(23) -使项目组度过完整的生命周期
开发管理 CheckLists(22) -组织项目资源
开发管理 CheckLists(21) -控制项目的范围开发管理 CheckLists(20) -项目利益相关者责任开发管理 CheckLists(19) -选择合适的团队成员开发管理 CheckLists(18) -敏捷开发 Scrum Master 工作开发管理 C
- js实现切换
百合不是茶
JavaScript栏目切换
js主要功能之一就是实现页面的特效,窗体的切换可以减少页面的大小,被门户网站大量应用思路:
1,先将要显示的设置为display:bisible 否则设为none
2,设置栏目的id ,js获取栏目的id,如果id为Null就设置为显示
3,判断js获取的id名字;再设置是否显示
代码实现:
html代码:
<di
- 周鸿祎在360新员工入职培训上的讲话
bijian1013
感悟项目管理人生职场
这篇文章也是最近偶尔看到的,考虑到原博客发布者可能将其删除等原因,也更方便个人查找,特将原文拷贝再发布的。“学东西是为自己的,不要整天以混的姿态来跟公司博弈,就算是混,我觉得你要是能在混的时间里,收获一些别的有利于人生发展的东西,也是不错的,看你怎么把握了”,看了之后,对这句话记忆犹新。 &
- 前端Web开发的页面效果
Bill_chen
htmlWebMicrosoft
1.IE6下png图片的透明显示:
<img src="图片地址" border="0" style="Filter.Alpha(Opacity)=数值(100),style=数值(3)"/>
或在<head></head>间加一段JS代码让透明png图片正常显示。
2.<li>标
- 【JVM五】老年代垃圾回收:并发标记清理GC(CMS GC)
bit1129
垃圾回收
CMS概述
并发标记清理垃圾回收(Concurrent Mark and Sweep GC)算法的主要目标是在GC过程中,减少暂停用户线程的次数以及在不得不暂停用户线程的请夸功能,尽可能短的暂停用户线程的时间。这对于交互式应用,比如web应用来说,是非常重要的。
CMS垃圾回收针对新生代和老年代采用不同的策略。相比同吞吐量垃圾回收,它要复杂的多。吞吐量垃圾回收在执
- Struts2技术总结
白糖_
struts2
必备jar文件
早在struts2.0.*的时候,struts2的必备jar包需要如下几个:
commons-logging-*.jar Apache旗下commons项目的log日志包
freemarker-*.jar  
- Jquery easyui layout应用注意事项
bozch
jquery浏览器easyuilayout
在jquery easyui中提供了easyui-layout布局,他的布局比较局限,类似java中GUI的border布局。下面对其使用注意事项作简要介绍:
如果在现有的工程中前台界面均应用了jquery easyui,那么在布局的时候最好应用jquery eaysui的layout布局,否则在表单页面(编辑、查看、添加等等)在不同的浏览器会出
- java-拷贝特殊链表:有一个特殊的链表,其中每个节点不但有指向下一个节点的指针pNext,还有一个指向链表中任意节点的指针pRand,如何拷贝这个特殊链表?
bylijinnan
java
public class CopySpecialLinkedList {
/**
* 题目:有一个特殊的链表,其中每个节点不但有指向下一个节点的指针pNext,还有一个指向链表中任意节点的指针pRand,如何拷贝这个特殊链表?
拷贝pNext指针非常容易,所以题目的难点是如何拷贝pRand指针。
假设原来链表为A1 -> A2 ->... -> An,新拷贝
- color
Chen.H
JavaScripthtmlcss
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN" "http://www.w3.org/TR/html4/loose.dtd"> <HTML> <HEAD>&nbs
- [信息与战争]移动通讯与网络
comsci
网络
两个坚持:手机的电池必须可以取下来
光纤不能够入户,只能够到楼宇
建议大家找这本书看看:<&
- oracle flashback query(闪回查询)
daizj
oracleflashback queryflashback table
在Oracle 10g中,Flash back家族分为以下成员:
Flashback Database
Flashback Drop
Flashback Table
Flashback Query(分Flashback Query,Flashback Version Query,Flashback Transaction Query)
下面介绍一下Flashback Drop 和Flas
- zeus持久层DAO单元测试
deng520159
单元测试
zeus代码测试正紧张进行中,但由于工作比较忙,但速度比较慢.现在已经完成读写分离单元测试了,现在把几种情况单元测试的例子发出来,希望有人能进出意见,让它走下去.
本文是zeus的dao单元测试:
1.单元测试直接上代码
package com.dengliang.zeus.webdemo.test;
import org.junit.Test;
import o
- C语言学习三printf函数和scanf函数学习
dcj3sjt126com
cprintfscanflanguage
printf函数
/*
2013年3月10日20:42:32
地点:北京潘家园
功能:
目的:
测试%x %X %#x %#X的用法
*/
# include <stdio.h>
int main(void)
{
printf("哈哈!\n"); // \n表示换行
int i = 10;
printf
- 那你为什么小时候不好好读书?
dcj3sjt126com
life
dady, 我今天捡到了十块钱, 不过我还给那个人了
good girl! 那个人有没有和你讲thank you啊
没有啦....他拉我的耳朵我才把钱还给他的, 他哪里会和我讲thank you
爸爸, 如果地上有一张5块一张10块你拿哪一张呢....
当然是拿十块的咯...
爸爸你很笨的, 你不会两张都拿
爸爸为什么上个月那个人来跟你讨钱, 你告诉他没
- iptables开放端口
Fanyucai
linuxiptables端口
1,找到配置文件
vi /etc/sysconfig/iptables
2,添加端口开放,增加一行,开放18081端口
-A INPUT -m state --state NEW -m tcp -p tcp --dport 18081 -j ACCEPT
3,保存
ESC
:wq!
4,重启服务
service iptables
- Ehcache(05)——缓存的查询
234390216
排序ehcache统计query
缓存的查询
目录
1. 使Cache可查询
1.1 基于Xml配置
1.2 基于代码的配置
2 指定可搜索的属性
2.1 可查询属性类型
2.2 &
- 通过hashset找到数组中重复的元素
jackyrong
hashset
如何在hashset中快速找到重复的元素呢?方法很多,下面是其中一个办法:
int[] array = {1,1,2,3,4,5,6,7,8,8};
Set<Integer> set = new HashSet<Integer>();
for(int i = 0
- 使用ajax和window.history.pushState无刷新改变页面内容和地址栏URL
lanrikey
history
后退时关闭当前页面
<script type="text/javascript">
jQuery(document).ready(function ($) {
if (window.history && window.history.pushState) {
- 应用程序的通信成本
netkiller.github.com
虚拟机应用服务器陈景峰netkillerneo
应用程序的通信成本
什么是通信
一个程序中两个以上功能相互传递信号或数据叫做通信。
什么是成本
这是是指时间成本与空间成本。 时间就是传递数据所花费的时间。空间是指传递过程耗费容量大小。
都有哪些通信方式
全局变量
线程间通信
共享内存
共享文件
管道
Socket
硬件(串口,USB) 等等
全局变量
全局变量是成本最低通信方法,通过设置
- 一维数组与二维数组的声明与定义
恋洁e生
二维数组一维数组定义声明初始化
/** * */ package test20111005; /** * @author FlyingFire * @date:2011-11-18 上午04:33:36 * @author :代码整理 * @introduce :一维数组与二维数组的初始化 *summary: */ public c
- Spring Mybatis独立事务配置
toknowme
mybatis
在项目中有很多地方会使用到独立事务,下面以获取主键为例
(1)修改配置文件spring-mybatis.xml <!-- 开启事务支持 --> <tx:annotation-driven transaction-manager="transactionManager" /> &n
- 更新Anadroid SDK Tooks之后,Eclipse提示No update were found
xp9802
eclipse
使用Android SDK Manager 更新了Anadroid SDK Tooks 之后,
打开eclipse提示 This Android SDK requires Android Developer Toolkit version 23.0.0 or above, 点击Check for Updates
检测一会后提示 No update were found