- PyTorch 学习路线
gorgor在码农
#python入门基础pythonpytorch
学习PyTorch需要结合理论理解和实践编码,逐步掌握其核心功能和实际应用。以下是分阶段的学习路径和资源推荐,适合从入门到进阶:1.基础知识准备前提条件Python基础:熟悉Python语法(变量、函数、类、模块等)。数学基础:了解线性代数、微积分、概率论(深度学习的基础)。机器学习基础:理解神经网络、损失函数、优化器(如梯度下降)等概念。学习资源Python入门:Python官方教程机器学习基础
- 机器学习篇——决策树基础
巷955
机器学习算法决策树
引言:决策树是一种常见的机器学习算法,广泛应用于分类和回归任务。它通过树状结构表示决策过程,每个内部节点代表一个特征测试,每个分支代表一个可能的测试结果,而每个叶节点则代表一个类别或回归值。本文将详细介绍决策树的原理、构建过程、优缺点以及实际应用。1.决策树的基本概念1.1什么是决策树?决策树是一种监督学习算法,主要用于分类和回归任务。它通过递归地将数据集划分为更小的子集,最终生成一棵树状结构。决
- 无监督AI训练:机遇与挑战并存
AI天才研究院
计算ChatGPTDeepSeekR1&大数据AI人工智能大模型javapythonjavascriptkotlingolang架构人工智能大厂程序员硅基计算碳基计算认知计算生物计算深度学习神经网络大数据AIGCAGILLM系统架构设计软件哲学Agent程序员实现财富自由
无监督AI训练:机遇与挑战并存关键词:无监督学习、AI训练、机器学习、聚类算法、降维技术、深度学习摘要:本文深入探讨无监督AI训练这一新兴领域,首先介绍了其基本概念与原理,然后详细解析了无监督AI训练的核心技术,如聚类算法和降维技术,以及无监督深度学习。接着,本文通过实际项目案例分析,展示了无监督AI训练的应用实践。最后,本文分析了无监督AI训练面临的挑战,并展望了其未来发展趋势。通过本文的阅读,
- PyTorch:Python深度学习框架使用详解
零 度°
pythonpython深度学习pytorch
PyTorch是一个开源的机器学习库,广泛用于计算机视觉和自然语言处理领域。它由Facebook的AI研究团队开发,因其动态计算图、易用性以及与Python的紧密集成而受到开发者的青睐。PyTorch的主要特点动态计算图:PyTorch的计算图在运行时构建,使得模型的修改和调试更加灵活。自动微分:自动计算梯度,简化了机器学习模型的训练过程。丰富的API:提供了丰富的神经网络层、函数和损失函数。跨平
- python | flower,一个强大的 Python 库!
双木的木
python拓展学习python库python开发语言计算机视觉人工智能算法联邦学习深度学习
本文来源公众号“python”,仅用于学术分享,侵权删,干货满满。原文链接:flower,一个强大的Python库!大家好,今天为大家分享一个强大的Python库-flower。Github地址:https://github.com/mher/flower随着机器学习模型应用的增长,联邦学习(FederatedLearning,FL)逐渐成为一个重要方向。联邦学习允许多个客户端在不共享原始数据的情
- 【开源项目】2024最新PHP在线客服系统源码/带预知消息/带搭建教程
于飞SEO
免费资源分享开源php开发语言
简介随着人工智能技术的飞速发展,AI驱动的在线客服系统已经成为企业提升客户服务质量和效率的重要工具。本文将探讨AI在线客服系统的理论基础,并展示如何使用PHP语言实现一个简单的AI客服系统。源码仓库地址:ym.fzapp.top在线客服系统的理论基础AI在线客服系统通过自然语言处理(NLP)、机器学习(ML)和深度学习(DL)技术,能够理解和响应客户的查询。这些系统通常包括以下几个关键组件:自然语
- ChatGPT-4o引领医学革命:临床科研创新与效率的新纪元
小艳加油
教程语言类人工智能数据分析ChatGPT-4o临床医学
2024年5月12日,更强版本的ChatGPT-4o上线,文本、语音、图像等多模态交互方式使其在各行各业的应用呈现了更多的可能性。因此,帮助广大临床医学相关的医院管理人员、医生、学生、科研人员更加熟练地掌握ChatGPT-4o在临床医学日常生活、工作与学习、课题申报、论文选题、实验方案设计、实验数据统计分析与可视化等方面的强大功能,同时更加系统地学习人工智能(包括传统机器学习、深度学习等)的基础理
- 电机的声音数据进行AI分析
鹿屿二向箔
人工智能
对电机的声音数据进行分析,尤其是当数据来源于加速度传感器时,涉及到的不仅仅是声音分析,还包含了振动分析。这类问题通常可以归类于机械故障诊断或预测性维护领域。以下是一些适合处理这种类型数据的人工智能模型和方法:1.特征工程+传统机器学习模型在直接应用深度学习之前,通常首先会进行特征提取。对于振动信号(即使通过加速度传感器采集),常用的方法包括计算频域特征(如傅里叶变换后的频谱)、时域特征(如均方根值
- 可解释性机器学习——从金融科技视角(1)
flex_university
可解释性机器学习与金融科技机器学习深度学习金融
可解释性机器学习——从金融科技视角(1)内容摘要:可解释性的重要性文章目录可解释性机器学习——从金融科技视角(1)1、过程为什么重要2、可解释性机器学习模型能做到什么3、什么时候不需要可解释性1、过程为什么重要尽管机器学习模型表现良好,但单一指标(如分类准确性)是对大多数实际任务的不完整表述。(Doshi-Velez&Kim2017)。某些任务不仅需要得到预测结果,更需要解释模型是如何得出预测的。
- Python简介
Gao_xu_sheng
python开发语言
Python前言Python一直是一门优秀的编程语言,不仅简洁、易用,而且功能强大,它能做到的事情太多了,既可用于开发桌面应用,也可用于做网络编程,网络爬虫,还有很重要的领域就是AI大模型开发。近年来,随着人工智能(AI)和机器学习(ML)领域的迅猛发展,Python在这些前沿技术中扮演了至关重要的角色,特别是在构建和训练大规模机器学习方面。Python拥有丰富的库和框架,这些工具极大地促进了AI
- PyTorch系列教程:编写高效模型训练流程
梦想画家
人工智能#pythonpytorch人工智能python
当使用PyTorch开发机器学习模型时,建立一个有效的训练循环是至关重要的。这个过程包括组织和执行对数据、参数和计算资源的操作序列。让我们深入了解关键组件,并演示如何构建一个精细的训练循环流程,有效地处理数据处理,向前和向后传递以及参数更新。模型训练流程PyTorch训练循环流程通常包括:加载数据批量处理执行正向传播计算损失反向传播更新权重一个典型的训练流程将这些步骤合并到一个迭代过程中,在数据集
- 新一代 AI 软件Manus 将重新将AI市场大洗牌
CircuitWizard
人工智能
Manus是一家专注于手部追踪、虚拟现实(VR)和增强现实(AR)技术的公司,其新一代AI软件结合了先进的机器学习和计算机视觉技术,致力于提升人机交互的自然性和效率。以下是关于Manus新一代AI软件的详细介绍及其核心功能:1.核心技术与创新Manus的AI软件基于以下技术突破:高精度手部追踪:通过深度学习算法和摄像头/传感器数据,实时捕捉手部骨骼、关节和肌肉的细微动作,精度可达亚毫米级,支持复杂
- 【面经&八股】搜广推方向:面试记录(九)
秋冬无暖阳°
搜广推等—算法面经面试职场和发展
【面经&八股】搜广推方向:面试记录(九)文章目录【面经&八股】搜广推方向:面试记录(九)1.自我介绍2.科研-项目经历问答3.实习经历问答4.八股5.编程题6.反问1.自我介绍。。。。。。2.科研-项目经历问答挑了我的论文,一直揪着问,建议一定要熟悉自己的工作。3.实习经历问答这个基本上没问。4.八股写一下LR—逻辑回归损失公式:当y=1时,损失函数等于y_hat的负对数,即越接近1,损失越小;越
- 【自然语言处理-NLP】情感分析与主题建模
云博士的AI课堂
深度学习哈佛博后带你玩转机器学习自然语言处理人工智能情感分析主题建模深度学习机器学习NLP
以下内容详细剖析了NLP中情感分析(SentimentAnalysis)和主题建模(TopicModeling)的技术与方法,分别展示如何从文本中提取情感倾向和潜在主题,并提供示例代码和讲解,可在Python环境下直接运行。目录情感分析(SentimentAnalysis)1.1概念与方法概览1.2传统机器学习方法1.3深度学习与预训练模型1.4代码示例:基于机器学习的情感分类主题建模(Topic
- 2020年精排模型调研
Marcus-Bao
机器不学习人工智能机器学习大数据算法
❝本文经作者同意转载自:https://zhuanlan.zhihu.com/p/335781101作者:Ruhjkg编辑:MarcusBao谢绝任何形式的二次转载!❞2020年精排模型调研前言最近由于工作需要调研了一下2020年关于精排模型的进展。在广告推荐领域的CTR预估问题上,早期以LR+人工特征工程为主的机器学习方法,但由于人工组合特征工程成本较高,不同任务难以复用。后面FM因子分解机提出
- python搭建NPL模型的详细步骤和代码
百锦再@新空间代码工作室
包罗万象python开发语言djangoflaskpygamepip
目录**一、环境准备****二、数据准备****三、文本预处理****1.清理文本****四、特征工程****1.TF-IDF****2.Word2Vec****五、搭建NLP模型****1.逻辑回归****2.LSTM深度学习模型****六、使用预训练的BERT模型****七、模型评估****八、部署模型****总结**1.**人机交互的核心技术**2.**推动AI技术发展的动力**3.**广泛
- AI与机器学习、深度学习在气候变化预测中的应用
weixin_贾
农业模型气象人必备模型人工智能机器学习深度学习气候数据预测气候变化趋势农业生产气溶胶
全球气候变化是现代社会面临的最重要的环境挑战之一,影响了气温、降水、海平面、农业、生态系统等多个方面。气候变化的驱动因素主要包括温室气体排放、气溶胶浓度、火灾频发、海冰融化、叶绿素变化、农业变化和生态环境变化等。这些因素在全球范围内交互作用,导致复杂的气候变化模式。将学习如何应用ChatGPT、Deepseek辅助Python编程、学习如何下载处理NASA卫星、CMIP6数据。通过机器学习(K-m
- python版本更新历史_Python3 是否已经完成了取代 Python2 的历史进程?
wongzo
python版本更新历史
最新情况:搞web开发之类的还是用py2的多,但搞数据科学现在基本都py3了,之前不推荐py3是因为它不支持一些3D绘图库,但现在一些机器学习库刚出来的新版有的只支持py3,所以搞数据的还是用py3吧。--------------------------------照目前的情形看,哪怕python3退出历史舞台了python2还会活的好好的!官方倒是想让py2早死早超生,然而天不遂人愿,1:由于p
- TensorFlow的基本框架和理解-初学者通过这一篇文章就够了
无人不智能,机器不学习
TensorFlowTensorFlow基本框架python
tensorflow的理解Tensorflow是一种机器学习框架,如果我们有大量的数据,我们可以利用他协助医生检查糖尿病性视网膜病变来预防患者失明等应用新版本中一个有趣的功能是eagerexecution,允许用户在不创建图形的情况下运行tensorflow代码,一种动态图机制它是一个命令式、由运行定义的接口,一旦从Python被调用,其操作立即被执行。这使得入门TensorFlow变的更简单,也
- 【神经网络】python实现神经网络(一)——数据集获取
师兄师兄怎么办
机器学习算法python神经网络python人工智能手写数字识别深度学习机器学习
一.概述在文章【机器学习】一个例子带你了解神经网络是什么中,我们大致了解神经网络的正向信息传导、反向传导以及学习过程的大致流程,现在我们正式开始进行代码的实现,首先我们来实现第一步的运算过程模拟讲解:正向传导。本次代码实现将以“手写数字识别”为例子。二.测试训练数据集的获取首先我们需要通过官网获取到手写数字识别数据集,数据集一共分为四个部分,分别是训练集的图片(六万张)、训练集的标签、测试集的图片
- Deepseek r1回答:人工智能的本质是什么? 给人类社会带来的意义是什么? 相比于之前的互联网革命,这一轮的人工智能革命的特点和异同点有哪些?
强化学习曾小健
Deepseek原理与使用人工智能
嗯,用户问的是人工智能的本质、对社会的意义,以及和互联网革命的比较。首先得拆解这三个问题,逐个分析。用户可能对AI有一定了解,但想深入理解其核心和影响。可能需要从技术、社会、历史角度切入。先想AI的本质。本质是什么?是模拟人类智能,还是数据处理?可能需要提到机器学习、深度学习,尤其是神经网络。但本质可能更深层,比如自主决策、模式识别。还要区分弱AI和强AI,现在都是弱AI,专注于特定任务。然后是意
- 决策树、朴素贝叶斯、随机森林、支持向量机、XGBoost 和 LightGBM算法的R语言实现
生信与基因组学
生信分析项目进阶技能合集算法机器学习r语言
基本逻辑(1)使用rnorm函数生成5个特征变量x1到x5,并根据这些特征变量的线性组合生成一个二分类的响应变量y;(2)将生成的数据存储在数据框中,处理缺失值,并将响应变量转换为因子类型;(3)使用决策树、朴素贝叶斯、随机森林、支持向量机、XGBoost和LightGBM六种机器学习模型算法对数据进行训练和评估;(4)将各个模型的准确率和AUC值存储在结果数据框中,并通过柱状图展示结果。1.R包
- 解决Python中加载sklearn加州房价数据集出错的问题
冰雪之境
pythonsklearn开发语言Python
解决Python中加载sklearn加州房价数据集出错的问题在使用Python的scikit-learn库进行机器学习任务时,我们经常需要加载各种数据集。其中,加州房价数据集是一个常用的示例数据集之一,用于回归问题的训练和测试。然而,有时在加载加州房价数据集时可能会遇到HTTP错误的问题,具体表现为"HTTPError:HTTPError:Forbidden"。本文将介绍如何解决这个问题,并提供相
- 《探秘课程蒸馏体系“三阶训练法”:解锁知识层级递进式迁移的密码》
人工智能深度学习
在人工智能与教育科技深度融合的时代,如何高效地实现知识传递与能力提升,成为众多学者、教育工作者以及技术专家共同探索的课题。课程蒸馏体系中的“三阶训练法”,作为一种创新的知识迁移模式,正逐渐崭露头角,为解决这一难题提供了全新的思路。从概念上讲,课程蒸馏体系借鉴了机器学习中知识蒸馏的思想,将复杂、庞大的知识体系进行提炼和压缩,使其能够更有效地被学习者吸收。而“三阶训练法”作为该体系的核心,通过精心设计
- GitHub每日最火火火项目(3.7)
FutureUniant
github日推github人工智能计算机视觉音视频ai
ai-hedge-fund项目介绍:ai-hedge-fund是由virattt开发的项目,本质上是一个将人工智能技术应用于对冲基金领域的团队或平台。在金融市场中,对冲基金旨在通过各种策略获取超额收益,而人工智能具备强大的数据分析和预测能力,二者结合能为投资决策带来新的思路和方法。该项目可能运用机器学习、深度学习等人工智能算法,对大量的金融数据进行深入分析,包括股票、债券、期货等市场的历史价格、交
- 【AI-42】如何调整参数和超参
W Y
人工智能
在机器学习和深度学习中,参数和超参数是两个重要概念,以下是一些常见的参数和超参数及其作用:参数权重(Weight)解释:可以将权重想象成连接不同神经元之间的“桥梁”,其大小决定了一个神经元的输出对下一个神经元的影响程度。权重越大,说明前一个神经元对后一个神经元的影响就越大;权重越小,影响就越小。作用:在模型训练过程中,权重不断调整,使得模型能够学习到输入数据中的各种特征和模式,从而实现对数据的准确
- 使用Python和机器学习技术对高中物理题目进行分类的示例代码
max500600
python机器学习python分类
以下是一个使用Python和机器学习技术对高中物理题目进行分类的示例代码。我们将使用自然语言处理(NLP)技术处理题目的文本信息,并使用朴素贝叶斯分类器进行分类。步骤概述数据准备:准备包含高中物理题目的数据集,每个题目都有对应的类别标签。文本预处理:对题目文本进行清洗和特征提取。模型训练:使用训练数据训练分类模型。模型评估:使用测试数据评估模型的性能。预测:使用训练好的模型对新的物理题目进行分类。
- Python 在 AI 领域的应用:从零构建你的第一个 AI 模型
嵌入式Jerry
Pythonpython人工智能开发语言嵌入式硬件windowsubuntu
引言人工智能(AI)已经成为现代科技的核心,而Python是AI领域最受欢迎的编程语言之一。其强大的库和框架,如TensorFlow、PyTorch、scikit-learn,使AI开发变得更加简单高效。本文将带你深入理解Python在AI中的应用,并通过机器学习(MachineLearning)和深度学习(DeepLearning)的实际示例,讲解如何构建一个AI模型。1.Python为什么适合
- 图像处理篇---opencv中的图像特征
Ronin-Lotus
图像处理篇深度学习篇图像处理opencv人工智能python
文章目录前言一、纹理特征:局部二值模式(LBP)1.LBP简介2.LBP计算步骤3.OpenCV实现4.优点5.缺点二、形状特征:Hu矩1.Hu矩简介2.Hu矩计算步骤3.OpenCV实现4.优点5.缺点三、其他可用于传统机器学习的特征1.颜色特征颜色直方图颜色矩2.边缘特征Canny边缘检测HOG(方向梯度直方图)3.关键点特征SIFTSURF4.纹理特征Haralick纹理特征5.几何特征轮廓
- 深度学习篇---Opencv中的机器学习和深度学习
Ronin-Lotus
深度学习篇图像处理篇深度学习opencv机器学习python
文章目录前言一、OpenCV中的机器学习1.概述2.使用步骤步骤1:准备数据步骤2:创建模型步骤3:训练模型步骤4:预测3.优点简单易用轻量级实时性4.缺点特征依赖性能有限二、OpenCV中的深度学习1.概述图像分类(如ResNet、MobileNet)目标检测(如YOLO、SSD)语义分割(如DeepLab)人脸检测(如OpenFace)2.使用步骤步骤1:加载模型步骤2:准备输入数据步骤3:推
- linux系统服务器下jsp传参数乱码
3213213333332132
javajsplinuxwindowsxml
在一次解决乱码问题中, 发现jsp在windows下用js原生的方法进行编码没有问题,但是到了linux下就有问题, escape,encodeURI,encodeURIComponent等都解决不了问题
但是我想了下既然原生的方法不行,我用el标签的方式对中文参数进行加密解密总该可以吧。于是用了java的java.net.URLDecoder,结果还是乱码,最后在绝望之际,用了下面的方法解决了
- Spring 注解区别以及应用
BlueSkator
spring
1. @Autowired
@Autowired是根据类型进行自动装配的。如果当Spring上下文中存在不止一个UserDao类型的bean,或者不存在UserDao类型的bean,会抛出 BeanCreationException异常,这时可以通过在该属性上再加一个@Qualifier注解来声明唯一的id解决问题。
2. @Qualifier
当spring中存在至少一个匹
- printf和sprintf的应用
dcj3sjt126com
PHPsprintfprintf
<?php
printf('b: %b <br>c: %c <br>d: %d <bf>f: %f', 80,80, 80, 80);
echo '<br />';
printf('%0.2f <br>%+d <br>%0.2f <br>', 8, 8, 1235.456);
printf('th
- config.getInitParameter
171815164
parameter
web.xml
<servlet>
<servlet-name>servlet1</servlet-name>
<jsp-file>/index.jsp</jsp-file>
<init-param>
<param-name>str</param-name>
- Ant标签详解--基础操作
g21121
ant
Ant的一些核心概念:
build.xml:构建文件是以XML 文件来描述的,默认构建文件名为build.xml。 project:每个构建文
- [简单]代码片段_数据合并
53873039oycg
代码
合并规则:删除家长phone为空的记录,若一个家长对应多个孩子,保留一条家长记录,家长id修改为phone,对应关系也要修改。
代码如下:
- java 通信技术
云端月影
Java 远程通信技术
在分布式服务框架中,一个最基础的问题就是远程服务是怎么通讯的,在Java领域中有很多可实现远程通讯的技术,例如:RMI、MINA、ESB、Burlap、Hessian、SOAP、EJB和JMS等,这些名词之间到底是些什么关系呢,它们背后到底是基于什么原理实现的呢,了解这些是实现分布式服务框架的基础知识,而如果在性能上有高的要求的话,那深入了解这些技术背后的机制就是必须的了,在这篇blog中我们将来
- string与StringBuilder 性能差距到底有多大
aijuans
之前也看过一些对string与StringBuilder的性能分析,总感觉这个应该对整体性能不会产生多大的影响,所以就一直没有关注这块!
由于学程序初期最先接触的string拼接,所以就一直没改变过自己的习惯!
- 今天碰到 java.util.ConcurrentModificationException 异常
antonyup_2006
java多线程工作IBM
今天改bug,其中有个实现是要对map进行循环,然后有删除操作,代码如下:
Iterator<ListItem> iter = ItemMap.keySet.iterator();
while(iter.hasNext()){
ListItem it = iter.next();
//...一些逻辑操作
ItemMap.remove(it);
}
结果运行报Con
- PL/SQL的类型和JDBC操作数据库
百合不是茶
PL/SQL表标量类型游标PL/SQL记录
PL/SQL的标量类型:
字符,数字,时间,布尔,%type五中类型的
--标量:数据库中预定义类型的变量
--定义一个变长字符串
v_ename varchar2(10);
--定义一个小数,范围 -9999.99~9999.99
v_sal number(6,2);
--定义一个小数并给一个初始值为5.4 :=是pl/sql的赋值号
- Mockito:一个强大的用于 Java 开发的模拟测试框架实例
bijian1013
mockito单元测试
Mockito框架:
Mockito是一个基于MIT协议的开源java测试框架。 Mockito区别于其他模拟框架的地方主要是允许开发者在没有建立“预期”时验证被测系统的行为。对于mock对象的一个评价是测试系统的测
- 精通Oracle10编程SQL(10)处理例外
bijian1013
oracle数据库plsql
/*
*处理例外
*/
--例外简介
--处理例外-传递例外
declare
v_ename emp.ename%TYPE;
begin
SELECT ename INTO v_ename FROM emp
where empno=&no;
dbms_output.put_line('雇员名:'||v_ename);
exceptio
- 【Java】Java执行远程机器上Linux命令
bit1129
linux命令
Java使用ethz通过ssh2执行远程机器Linux上命令,
封装定义Linux机器的环境信息
package com.tom;
import java.io.File;
public class Env {
private String hostaddr; //Linux机器的IP地址
private Integer po
- java通信之Socket通信基础
白糖_
javasocket网络协议
正处于网络环境下的两个程序,它们之间通过一个交互的连接来实现数据通信。每一个连接的通信端叫做一个Socket。一个完整的Socket通信程序应该包含以下几个步骤:
①创建Socket;
②打开连接到Socket的输入输出流;
④按照一定的协议对Socket进行读写操作;
④关闭Socket。
Socket通信分两部分:服务器端和客户端。服务器端必须优先启动,然后等待soc
- angular.bind
boyitech
AngularJSangular.bindAngularJS APIbind
angular.bind 描述: 上下文,函数以及参数动态绑定,返回值为绑定之后的函数. 其中args是可选的动态参数,self在fn中使用this调用。 使用方法: angular.bind(se
- java-13个坏人和13个好人站成一圈,数到7就从圈里面踢出一个来,要求把所有坏人都给踢出来,所有好人都留在圈里。请找出初始时坏人站的位置。
bylijinnan
java
import java.util.ArrayList;
import java.util.List;
public class KickOutBadGuys {
/**
* 题目:13个坏人和13个好人站成一圈,数到7就从圈里面踢出一个来,要求把所有坏人都给踢出来,所有好人都留在圈里。请找出初始时坏人站的位置。
* Maybe you can find out
- Redis.conf配置文件及相关项说明(自查备用)
Kai_Ge
redis
Redis.conf配置文件及相关项说明
# Redis configuration file example
# Note on units: when memory size is needed, it is possible to specifiy
# it in the usual form of 1k 5GB 4M and so forth:
#
- [强人工智能]实现大规模拓扑分析是实现强人工智能的前奏
comsci
人工智能
真不好意思,各位朋友...博客再次更新...
节点数量太少,网络的分析和处理能力肯定不足,在面对机器人控制的需求方面,显得力不从心....
但是,节点数太多,对拓扑数据处理的要求又很高,设计目标也很高,实现起来难度颇大...
- 记录一些常用的函数
dai_lm
java
public static String convertInputStreamToString(InputStream is) {
StringBuilder result = new StringBuilder();
if (is != null)
try {
InputStreamReader inputReader = new InputStreamRead
- Hadoop中小规模集群的并行计算缺陷
datamachine
mapreducehadoop并行计算
注:写这篇文章的初衷是因为Hadoop炒得有点太热,很多用户现有数据规模并不适用于Hadoop,但迫于扩容压力和去IOE(Hadoop的廉价扩展的确非常有吸引力)而尝试。尝试永远是件正确的事儿,但有时候不用太突进,可以调优或调需求,发挥现有系统的最大效用为上策。
-----------------------------------------------------------------
- 小学4年级英语单词背诵第二课
dcj3sjt126com
englishword
egg 蛋
twenty 二十
any 任何
well 健康的,好
twelve 十二
farm 农场
every 每一个
back 向后,回
fast 快速的
whose 谁的
much 许多
flower 花
watch 手表
very 非常,很
sport 运动
Chinese 中国的
- 自己实践了github的webhooks, linux上面的权限需要注意
dcj3sjt126com
githubwebhook
环境, 阿里云服务器
1. 本地创建项目, push到github服务器上面
2. 生成www用户的密钥
sudo -u www ssh-keygen -t rsa -C "xxx@xx.com"
3. 将密钥添加到github帐号的SSH_KEYS里面
3. 用www用户执行克隆, 源使
- Java冒泡排序
蕃薯耀
冒泡排序Java冒泡排序Java排序
冒泡排序
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
蕃薯耀 2015年6月23日 10:40:14 星期二
http://fanshuyao.iteye.com/
- Excle读取数据转换为实体List【基于apache-poi】
hanqunfeng
apache
1.依赖apache-poi
2.支持xls和xlsx
3.支持按属性名称绑定数据值
4.支持从指定行、列开始读取
5.支持同时读取多个sheet
6.具体使用方式参见org.cpframework.utils.excelreader.CP_ExcelReaderUtilTest.java
比如:
Str
- 3个处于草稿阶段的Javascript API介绍
jackyrong
JavaScript
原文:
http://www.sitepoint.com/3-new-javascript-apis-may-want-follow/?utm_source=html5weekly&utm_medium=email
本文中,介绍3个仍然处于草稿阶段,但应该值得关注的Javascript API.
1) Web Alarm API
&
- 6个创建Web应用程序的高效PHP框架
lampcy
Web框架PHP
以下是创建Web应用程序的PHP框架,有coder bay网站整理推荐:
1. CakePHP
CakePHP是一个PHP快速开发框架,它提供了一个用于开发、维护和部署应用程序的可扩展体系。CakePHP使用了众所周知的设计模式,如MVC和ORM,降低了开发成本,并减少了开发人员写代码的工作量。
2. CodeIgniter
CodeIgniter是一个非常小且功能强大的PHP框架,适合需
- 评"救市后中国股市新乱象泛起"谣言
nannan408
首先来看百度百家一位易姓作者的新闻:
三个多星期来股市持续暴跌,跌得投资者及上市公司都处于极度的恐慌和焦虑中,都要寻找自保及规避风险的方式。面对股市之危机,政府突然进入市场救市,希望以此来重建市场信心,以此来扭转股市持续暴跌的预期。而政府进入市场后,由于市场运作方式发生了巨大变化,投资者及上市公司为了自保及为了应对这种变化,中国股市新的乱象也自然产生。
首先,中国股市这两天
- 页面全屏遮罩的实现 方式
Rainbow702
htmlcss遮罩mask
之前做了一个页面,在点击了某个按钮之后,要求页面出现一个全屏遮罩,一开始使用了position:absolute来实现的。当时因为画面大小是固定的,不可以resize的,所以,没有发现问题。
最近用了同样的做法做了一个遮罩,但是画面是可以进行resize的,所以就发现了一个问题,当画面被reisze到浏览器出现了滚动条的时候,就发现,用absolute 的做法是有问题的。后来改成fixed定位就
- 关于angularjs的点滴
tntxia
AngularJS
angular是一个新兴的JS框架,和以往的框架不同的事,Angularjs更注重于js的建模,管理,同时也提供大量的组件帮助用户组建商业化程序,是一种值得研究的JS框架。
Angularjs使我们可以使用MVC的模式来写JS。Angularjs现在由谷歌来维护。
这里我们来简单的探讨一下它的应用。
首先使用Angularjs我
- Nutz--->>反复新建ioc容器的后果
xiaoxiao1992428
DAOmvcIOCnutz
问题:
public class DaoZ {
public static Dao dao() { // 每当需要使用dao的时候就取一次
Ioc ioc = new NutIoc(new JsonLoader("dao.js"));
return ioc.get(