- 【树一线性代数】005入门
Owlet_woodBird
算法
Index本文稍后补全,推荐阅读:https://blog.csdn.net/weixin_60702024/article/details/141874376分析实现总结本文稍后补全,推荐阅读:https://blog.csdn.net/weixin_60702024/article/details/141874376已知非空二叉树T的结点值均为正整数,采用顺序存储方式保存,数据结构定义如下:t
- 3.增删改查--连接查询
问女何所忆
关系型数据库的一个特点就是,多张表之间存在关系,以致于我们可以连接多张表进行查询操作,所以连接查询会是关系型数据库中最常见的操作。连接查询主要分为三种,交叉连接、内连接和外连接,我们一个个说。1、交叉连接交叉连接其实连接查询的第一个阶段,它简单表现为两张表的笛卡尔积形式,具体例子:如果你没学过数学中的笛卡尔积概念,你可以这样简单的理解这里的交叉连接:两张表的交叉连接就是一个连接合并的过程,T1表中
- 2024上半年软考系统架构设计师-综合知识选择题及答案
不对法
系统架构
1.操作系统先来先服务调度算法2.操作系统多道程序设计,利用率3.操作系统状态流转错误的,执行态到运行态4.数据库2NF每一个非主属性完全依赖主键5.数据库笛卡尔积m*n6.数据库不属于事务的特点,并发性7.数据库交集表达式R-(R-S)8.数据库反规范化属于逻辑设计9.网络没有加密功能,物理层10.网络二层交换机数据,数据链路层11.知识产权专利法是否属于民法12.知识产权商标不属于,其他几个是
- 三点or多点的变换矩阵求解opencv & eigen
合工大机器人实验室
C++矩阵opencv线性代数
《Estimating3-DRigidBodyTransformations:AComparisonofFourMajorAlgorithms》,它使用SVD方法计算T和t。只要算出变换矩阵,就可以算出A坐标系的一个点P在坐标系B里的对应点坐标,即R为3x3的转换矩阵,t为3x1的位移变换向量,这里点坐标均为3x1的列向量(非齐次形式,齐次形式下为4x1列向量,多出的一个元素值补1而已)。理论上只
- 如何有效的学习AI大模型?
Python程序员罗宾
学习人工智能语言模型自然语言处理架构
学习AI大模型是一个系统性的过程,涉及到多个学科的知识。以下是一些建议,帮助你更有效地学习AI大模型:基础知识储备:数学基础:学习线性代数、概率论、统计学和微积分等,这些是理解机器学习算法的数学基础。编程技能:掌握至少一种编程语言,如Python,因为大多数AI模型都是用Python实现的。理论学习:机器学习基础:了解监督学习、非监督学习、强化学习等基本概念。深度学习:学习神经网络的基本结构,如卷
- 有意思的一群人
遇见星语
尼采终生未娶、柏拉图终生末娶、笛卡尔终生未娶、牛顿终生未娶、歌德终生未娶、诺贝尔终生未娶、贝多芬终生未娶、王尔德终生未娶、舒伯特终生未娶、弗洛伊德终生未娶、亚当.思密终生未娶、帕斯卡终生未娶、安徒生终生未娶、达.芬奇终生未娶米开朗基罗终生未娶、木心也终生未娶………(你我之所以一事无成,是不是结婚太早的缘故呢?哈哈哈!)
- 【数据分享】2024年5月全国省市县行政区划shp数据,下载和处理过程,带审图号
研学随笔
经验分享
2024年5月,国家基础地理信息中心发布了《2024版国家地理信息公共服务平台(天地图)正式发布》的公告,在天地图官方网站,提供2024年省市县三级行政区划矢量数据的下载服务,数据格式为GeoJSON,审图号为GS(2024)0650号,坐标系为GCS_WGS_1984。1.数据来源2024年5月,GeoJSON格式的行政区划的数据来源于国家地理信息公共服务平台(天地图),网址为:https://
- 刚体运动描述:欧拉角与四元数
FL17171314
算法
姿态角偏差主要有三种描述方式:欧拉角误差,轴角误差和四元数误差。在机器人学中,刚体的运动描述是非常重要的,特别是当我们需要精确控制机器人的姿态时。欧拉角和四元数是两种常用的描述刚体在三维空间中旋转的方法。下面将分别介绍这两种方法并给出其特点。欧拉角定义与特点:定义:欧拉角是通过绕一个三维坐标系的三个轴依次旋转来定义的,通常按照某个固定的旋转顺序(如XYZ、ZYX等)进行。表示:欧拉角由三个角度组成
- 每日小计划
小糊涂神
活到老学到老到,学习永无止境,我坚持每天学习,我的学习计划如下:1.每天学习五个英语单词,和正在学习英语的儿子共同进步,方便辅导他。2.学习一节统计学或者一节线性代数课程,在此基础上进一步学习数据的处理软件。3.每天微信步数达到1万步,每天饭后过一下二人世界,不到沟通感情,而且还能强身健体!4.学习两节税务师课件,中级会计师已经通过,距离考高级还有几年,空档期考取税务师,充实自己的专业知识。5.坚
- 通俗理解线性回归(Linear Regression)
小夏refresh
机器学习数据挖掘机器学习算法人工智能数据挖掘
线性回归,最简单的机器学习算法,当你看完这篇文章,你就会发现,线性回归是多么的简单.首先,什么是线性回归.简单的说,就是在坐标系中有很多点,线性回归的目的就是找到一条线使得这些点都在这条直线上或者直线的周围,这就是线性回归(LinearRegression).是不是有画面感了?那么我们上图片:![1.png][1]那么接下来,就让我们来看看具体的线性回归吧首先,我们以二维数据为例:我们有一组数据x
- 深度学习算法,该如何深入,举例说明
liyy614
深度学习
深度学习算法的深入学习可以从理论和实践两个方面进行。理论上,深入理解深度学习需要掌握数学基础(如线性代数、概率论、微积分)、机器学习基础和深度学习框架原理。实践上,可以通过实现和优化深度学习模型来提升技能。理论深入数学基础线性代数:理解向量、矩阵、特征值和特征向量等,对于理解神经网络的权重和偏置矩阵至关重要。概率论:用于理解模型的不确定性,如Dropout等正则化技术。微积分:理解梯度下降等优化算
- 二维非稳态导热微分方程_二维非稳态传热的温度场数值模拟
weixin_39759060
二维非稳态导热微分方程
背景:这是本学期凝固实验课的实验之一。这节课有两个数值模拟实验,第一个是二维常物性的,只有一种介质。而第二个实验是模拟凝固过程,稍微复杂一些。这篇文章是针对第一个实验写的,实验书上是按照显示差分进行的,这里改为隐式差分以便于计算。由于本人不是学CS的,因此代码的质量可能不是很高。简要说明:二维非稳态传热、常物性、第一类边界条件、无内热源、网格的划分计算原理概述直角坐标系内二维导热过程温度场控制微分
- PDF标准详解(三)—— PDF坐标系统和坐标变换
aluluka
PDF相关技术pdf
之前我们了解了PDF文档的基本结构,并且展示了一个简单的helloworld。这个helloworld虽然只在页面中显示一个helloworld文字,但是包含的内容却是不少。这次我们仍然以它为切入点,来了解PDF的坐标系统以及坐标变换的相关知识图形学中二维图形变换中学我们学习了平面直角坐标系,x轴沿着水平方向从左往右递增,Y轴沿着竖直方向,从下往上坐标递增。而PDF的坐标系与数学中的坐标系相同。但
- MYSQL--数据查询语言DQL--连接查询\分页查询\子查询\联合查询
_twinkle_
每天学习8hMYSQLsql数据库mysql
连接查询含义:又称多表查询,当查询的字段来自于多个表时,就会用到连接查询笛卡尔乘积现象:表1有m行,表2有n行,结果=m*n行发生原因:没有有效的连接条件如何避免:添加有效的连接条件分类:按年代分类:sql92标准:仅仅支持内连接sql99标准【推荐】:支持内连接+外连接(左外和右外)+交叉连接按功能分类:内连接:等值连接非等值连接自连接外连接:左外连接右外连接全外连接(Oracle支持)交叉连接
- 非理工科院校怎么打好数学建模比赛 | 南川笔记
南川笔记
Proposition1非理工科院校最好不要打数学建模比赛。虽说“一次建模,终身受益”,但毕竟数学建模既要数学理论的支撑(不仅仅是大学里的微积分、线性代数和概率论与统计,更多的是基于微积分的常偏微分方程、基于线性代数的运筹学和基于概率论与统计的统计分析内容),还要编程的支撑(不是常规的C语言或者Java程序,也不是这几年很火的Python编程,而是基于数值运算的Matlab和基于统计的R),这在一
- 【鼠鼠学AI代码合集#5】线性代数
鼠鼠龙年发大财
鼠鼠学AI系列代码合集人工智能线性代数机器学习
在前面的例子中,我们已经讨论了标量的概念,并展示了如何使用代码对标量进行基本的算术运算。接下来,我将进一步说明该过程,并解释每一步的实现。标量(Scalar)的基本操作标量是只有一个元素的数值。它可以是整数、浮点数等。通过下面的Python代码,我们可以很容易地进行标量的加法、乘法、除法和指数运算。代码实现:importtorch#定义两个标量x=torch.tensor(3.0)#标量x,值为3
- 数学基础 -- 线性代数正交多项式之勒让德多项式展开推导
sz66cm
线性代数决策树算法
勒让德多项式展开的详细过程勒让德多项式是一类在区间[−1,1][-1,1][−1,1]上正交的多项式,可以用来逼近函数。我们可以将一个函数表示为勒让德多项式的线性组合。以下是如何推导勒让德多项式展开系数ana_nan的详细过程。1.勒让德展开的基本假设给定一个函数f(x)f(x)f(x),我们希望将它表示为勒让德多项式的线性组合:f(x)=∑n=0∞anPn(x),f(x)=\sum_{n=0}^
- 线性代数基础
wq_151
mathematic线性代数
Base对于矩阵A,对齐做SVD分解,即UΣV=svd(A)U\SigmaV=svd(A)UΣV=svd(A).其中U为AATAA^TAAT的特征向量,V为ATAA^TAATA的特征向量。Σ\SigmaΣ的对角元素为降序排序的特征值。显然,U、V矩阵中的列向量相互正交,所以也可以视V为svd分解给出了A的列向量空间的正交基,其中最大奇异值(或特征值)对应的特征向量捕捉了数据变化的最大方向。求满足A
- 2022考研数学李永乐复习全书pdf版-基础篇(数一二三通用)
面包资料屋
考研数学
2022考研数学李永乐复习全书pdf版-基础篇(数一二三通用):https://pan.baidu.com/s/1tK9cPPG5Q-xhasqb051ymQ提取码:1111本书是专门为准备参加硕士研究生入学考试提前复习的大二大三学生、在职考研人士及基础薄弱的考生编写。本书以初等数学水平为起点,阐述了考研数学要求的基本知识构架。希望本书能够帮助考生在短时间内厘清考研数学(包括高等数学、线性代数、概
- 线性代数|机器学习-P33卷积神经网络ImageNet和卷积规则
取个名字真难呐
算法机器学习矩阵人工智能线性代数
文章目录1.ImageNet2.卷积计算2.1两个多项式卷积2.2函数卷积2.3循环卷积3.周期循环矩阵和非周期循环矩阵4.循环卷积特征值4.1卷积计算的分解4.2运算量4.3二维卷积公式5.KroneckerProduct1.ImageNetImageNet的论文paper链接如下:详细请直接阅读相关论文即可通过网盘分享的文件:imagenet_cvpr09.pdf链接:https://pan.
- 在Vue项目中使用Proj4js库进行坐标系转换并加载WMTS服务
卡夫卡的小熊猫
vue.js前端
OpenLayers是一个用于创建Web地图应用程序的JavaScript库。它支持许多不同的地图投影和坐标系,包括常见的Web墨卡托投影(EPSG:3857)和经纬度坐标系(EPSG:4326),以及其他许多本地或自定义的投影和坐标系。要在OpenLayers中转换不同坐标系下的WMTS服务,你需要了解两个主要部分:坐标系的定义和WMTS服务的配置。安装Proj4js:首先,在Vue项目中安装P
- 使用proj4JS进行坐标转换
海亮啊
ArcGISAPIJSarcgisjavascript
proj4JS地址https://github.com/proj4js/proj4js安装npminstallproj4--save引入importproj4from"proj4"定义需要转换的坐标使用的坐标系,参数可以在qgis中查询proj4的值proj4.defs('EPSG:4548',"+proj=tmerc+lat_0=0+lon_0=117+k=1+x_0=500000+y_0=0+
- Python的图形化界面编程
iteye_20668
Pythonpython
2017.2.14好久没有写代码了,感觉过一个年弄的什么也没有干成,好像看了下c++,突然发现现在来看C++,要简单了好多,并且指针也没有那么难了,然后就是看了下机器学习,感觉有点小难,现在发现好多都涉及到高数,概率论和线性代数的知识,想想当初把这些学的是一塌糊涂。然后上次和胡杨大大聊天的时候,他说好多东西都是在实践中去学习的。好了,继续我的Python吧,Python的图形化界面编程。impor
- matlab初等变换函数,线性代数实践及 MATLAB 入门(2005年10月)
weixin_39861905
matlab初等变换函数
出版时间:2005-10-1作者:陈怀琛,龚杰民编著出版社:电子工业出版社程序集名为dsk05,课件名bk05课件内容简介本书是根据“用软件工具提高线性代数教学”的指导思想,参照美国1992—1997国家科学基金项目ATLAST的思路,编写成的线性代数补充教材,其目的是补充我国现有教材的的缺陷。它分为两篇,第一篇介绍线性代数所用的软件工具MATLAB语言,它可以作为教材,也可以作为手册使用;第二篇
- matlab线性代数电子书,实用大众线性代数 MATLAB版_13652907.pdf
三金乐了
matlab线性代数电子书
【作者】陈怀琛著【形态项】156【出版项】西安:西安电子科技大学出版社,2014.08【ISBN号】978-7-5606-3462-3【中图法分类号】O151.2【原书定价】20.00【主题词】线性代数-计算机辅助设计-MATLAB软件【参考文献格式】陈怀琛著.实用大众线性代数MATLAB版.西安:西安电子科技大学出版社,2014.08.内容提要:传统的线性代数源于数学家,教理论不教应用。工科需要
- 数学基础 -- 线性代数之格拉姆-施密特正交化
sz66cm
线性代数机器学习人工智能
格拉姆-施密特正交化格拉姆-施密特正交化(Gram-SchmidtOrthogonalization)是一种将一组线性无关的向量转换为一组两两正交向量的算法。通过该过程,我们能够从原始向量组中构造正交基,并且可以选择归一化使得向量组成为标准正交基。算法步骤假设我们有一组线性无关的向量{v1,v2,…,vn}\{v_1,v_2,\dots,v_n\}{v1,v2,…,vn},其目标是将这些向量正交化
- Matlab初等数学与线性代数
崔渭阳
matlabmatlab线性代数数据结构
初等数学算术运算基本算术加法+添加数字,追加字符串sum数组元素总和cumsum累积和movsum移动总和A=1:5;B=cumsum(A)B=1×51361015减法-减法diff差分和近似导数乘法.*乘法*矩阵乘法prod数组元素的乘积cumprod累积乘积pagemtimes按页矩阵乘法(自R2020b起)tensorprodTensorproductsbetweentwotensors(自
- 数学基础 -- 线性代数之矩阵的迹
sz66cm
线性代数机器学习决策树
矩阵的迹什么是矩阵的迹?矩阵的迹(TraceofaMatrix)是线性代数中的一个基本概念,定义为一个方阵主对角线上元素的总和。矩阵的迹在许多数学和物理应用中都起着重要作用,例如在矩阵分析、量子力学、统计学和系统理论中。矩阵迹的定义对于一个n×nn\timesnn×n的方阵AAA:A=(a11a12⋯a1na21a22⋯a2n⋮⋮⋱⋮an1an2⋯ann)A=\begin{pmatrix}a_{1
- 线性代数 第五讲:线性方程组_齐次线性方程组_非齐次线性方程组_公共解同解方程组_详解
小徐要考研
线性代数线性代数线性方程组机器学习
线性方程组文章目录线性方程组1.齐次线性方程组的求解1.1核心要义1.2基础解系与线性无关的解向量的个数1.3计算使用举例2.非齐次线性方程的求解2.1非齐次线性方程解的判定2.2非齐次线性方程解的结构2.3计算使用举例3.公共解与同解3.1两个方程组的公共解3.2同解方程组4.方程组的应用5.重难点题型总结5.1抽象齐次线性方程组的求解5.1含有系数的非齐次线性方程组的求解及有条件求全部解问题5
- Day04-线性代数-特征值和特征向量(DataWhale)
liying_tt
数学基础线性代数
七、特征值和特征向量AAA是n阶方阵,数λ\lambdaλ,若存在非零列向量α⃗\vec{\alpha}α,使得Aα⃗=λα⃗A\vec{\alpha}=\lambda\vec{\alpha}Aα=λα,则λ\lambdaλ是特征值,α⃗\vec{\alpha}α是对应于λ\lambdaλ的特征向量λ\lambdaλ可以为0α⃗\vec{\alpha}α不能为0⃗\vec{0}0,且为列向量Aα⃗
- 戴尔笔记本win8系统改装win7系统
sophia天雪
win7戴尔改装系统win8
戴尔win8 系统改装win7 系统详述
第一步:使用U盘制作虚拟光驱:
1)下载安装UltraISO:注册码可以在网上搜索。
2)启动UltraISO,点击“文件”—》“打开”按钮,打开已经准备好的ISO镜像文
- BeanUtils.copyProperties使用笔记
bylijinnan
java
BeanUtils.copyProperties VS PropertyUtils.copyProperties
两者最大的区别是:
BeanUtils.copyProperties会进行类型转换,而PropertyUtils.copyProperties不会。
既然进行了类型转换,那BeanUtils.copyProperties的速度比不上PropertyUtils.copyProp
- MyEclipse中文乱码问题
0624chenhong
MyEclipse
一、设置新建常见文件的默认编码格式,也就是文件保存的格式。
在不对MyEclipse进行设置的时候,默认保存文件的编码,一般跟简体中文操作系统(如windows2000,windowsXP)的编码一致,即GBK。
在简体中文系统下,ANSI 编码代表 GBK编码;在日文操作系统下,ANSI 编码代表 JIS 编码。
Window-->Preferences-->General -
- 发送邮件
不懂事的小屁孩
send email
import org.apache.commons.mail.EmailAttachment;
import org.apache.commons.mail.EmailException;
import org.apache.commons.mail.HtmlEmail;
import org.apache.commons.mail.MultiPartEmail;
- 动画合集
换个号韩国红果果
htmlcss
动画 指一种样式变为另一种样式 keyframes应当始终定义0 100 过程
1 transition 制作鼠标滑过图片时的放大效果
css
.wrap{
width: 340px;height: 340px;
position: absolute;
top: 30%;
left: 20%;
overflow: hidden;
bor
- 网络最常见的攻击方式竟然是SQL注入
蓝儿唯美
sql注入
NTT研究表明,尽管SQL注入(SQLi)型攻击记录详尽且为人熟知,但目前网络应用程序仍然是SQLi攻击的重灾区。
信息安全和风险管理公司NTTCom Security发布的《2015全球智能威胁风险报告》表明,目前黑客攻击网络应用程序方式中最流行的,要数SQLi攻击。报告对去年发生的60亿攻击 行为进行分析,指出SQLi攻击是最常见的网络应用程序攻击方式。全球网络应用程序攻击中,SQLi攻击占
- java笔记2
a-john
java
类的封装:
1,java中,对象就是一个封装体。封装是把对象的属性和服务结合成一个独立的的单位。并尽可能隐藏对象的内部细节(尤其是私有数据)
2,目的:使对象以外的部分不能随意存取对象的内部数据(如属性),从而使软件错误能够局部化,减少差错和排错的难度。
3,简单来说,“隐藏属性、方法或实现细节的过程”称为——封装。
4,封装的特性:
4.1设置
- [Andengine]Error:can't creat bitmap form path “gfx/xxx.xxx”
aijuans
学习Android遇到的错误
最开始遇到这个错误是很早以前了,以前也没注意,只当是一个不理解的bug,因为所有的texture,textureregion都没有问题,但是就是提示错误。
昨天和美工要图片,本来是要背景透明的png格式,可是她却给了我一个jpg的。说明了之后她说没法改,因为没有png这个保存选项。
我就看了一下,和她要了psd的文件,还好我有一点
- 自己写的一个繁体到简体的转换程序
asialee
java转换繁体filter简体
今天调研一个任务,基于java的filter实现繁体到简体的转换,于是写了一个demo,给各位博友奉上,欢迎批评指正。
实现的思路是重载request的调取参数的几个方法,然后做下转换。
- android意图和意图监听器技术
百合不是茶
android显示意图隐式意图意图监听器
Intent是在activity之间传递数据;Intent的传递分为显示传递和隐式传递
显式意图:调用Intent.setComponent() 或 Intent.setClassName() 或 Intent.setClass()方法明确指定了组件名的Intent为显式意图,显式意图明确指定了Intent应该传递给哪个组件。
隐式意图;不指明调用的名称,根据设
- spring3中新增的@value注解
bijian1013
javaspring@Value
在spring 3.0中,可以通过使用@value,对一些如xxx.properties文件中的文件,进行键值对的注入,例子如下:
1.首先在applicationContext.xml中加入:
<beans xmlns="http://www.springframework.
- Jboss启用CXF日志
sunjing
logjbossCXF
1. 在standalone.xml配置文件中添加system-properties:
<system-properties> <property name="org.apache.cxf.logging.enabled" value=&
- 【Hadoop三】Centos7_x86_64部署Hadoop集群之编译Hadoop源代码
bit1129
centos
编译必需的软件
Firebugs3.0.0
Maven3.2.3
Ant
JDK1.7.0_67
protobuf-2.5.0
Hadoop 2.5.2源码包
Firebugs3.0.0
http://sourceforge.jp/projects/sfnet_findbug
- struts2验证框架的使用和扩展
白糖_
框架xmlbeanstruts正则表达式
struts2能够对前台提交的表单数据进行输入有效性校验,通常有两种方式:
1、在Action类中通过validatexx方法验证,这种方式很简单,在此不再赘述;
2、通过编写xx-validation.xml文件执行表单验证,当用户提交表单请求后,struts会优先执行xml文件,如果校验不通过是不会让请求访问指定action的。
本文介绍一下struts2通过xml文件进行校验的方法并说
- 记录-感悟
braveCS
感悟
再翻翻以前写的感悟,有时会发现自己很幼稚,也会让自己找回初心。
2015-1-11 1. 能在工作之余学习感兴趣的东西已经很幸福了;
2. 要改变自己,不能这样一直在原来区域,要突破安全区舒适区,才能提高自己,往好的方面发展;
3. 多反省多思考;要会用工具,而不是变成工具的奴隶;
4. 一天内集中一个定长时间段看最新资讯和偏流式博
- 编程之美-数组中最长递增子序列
bylijinnan
编程之美
import java.util.Arrays;
import java.util.Random;
public class LongestAccendingSubSequence {
/**
* 编程之美 数组中最长递增子序列
* 书上的解法容易理解
* 另一方法书上没有提到的是,可以将数组排序(由小到大)得到新的数组,
* 然后求排序后的数组与原数
- 读书笔记5
chengxuyuancsdn
重复提交struts2的token验证
1、重复提交
2、struts2的token验证
3、用response返回xml时的注意
1、重复提交
(1)应用场景
(1-1)点击提交按钮两次。
(1-2)使用浏览器后退按钮重复之前的操作,导致重复提交表单。
(1-3)刷新页面
(1-4)使用浏览器历史记录重复提交表单。
(1-5)浏览器重复的 HTTP 请求。
(2)解决方法
(2-1)禁掉提交按钮
(2-2)
- [时空与探索]全球联合进行第二次费城实验的可能性
comsci
二次世界大战前后,由爱因斯坦参加的一次在海军舰艇上进行的物理学实验 -费城实验
至今给我们大家留下很多迷团.....
关于费城实验的详细过程,大家可以在网络上搜索一下,我这里就不详细描述了
在这里,我的意思是,现在
- easy connect 之 ORA-12154: TNS: 无法解析指定的连接标识符
daizj
oracleORA-12154
用easy connect连接出现“tns无法解析指定的连接标示符”的错误,如下:
C:\Users\Administrator>sqlplus username/
[email protected]:1521/orcl
SQL*Plus: Release 10.2.0.1.0 – Production on 星期一 5月 21 18:16:20 2012
Copyright (c) 198
- 简单排序:归并排序
dieslrae
归并排序
public void mergeSort(int[] array){
int temp = array.length/2;
if(temp == 0){
return;
}
int[] a = new int[temp];
int
- C语言中字符串的\0和空格
dcj3sjt126com
c
\0 为字符串结束符,比如说:
abcd (空格)cdefg;
存入数组时,空格作为一个字符占有一个字节的空间,我们
- 解决Composer国内速度慢的办法
dcj3sjt126com
Composer
用法:
有两种方式启用本镜像服务:
1 将以下配置信息添加到 Composer 的配置文件 config.json 中(系统全局配置)。见“例1”
2 将以下配置信息添加到你的项目的 composer.json 文件中(针对单个项目配置)。见“例2”
为了避免安装包的时候都要执行两次查询,切记要添加禁用 packagist 的设置,如下 1 2 3 4 5
- 高效可伸缩的结果缓存
shuizhaosi888
高效可伸缩的结果缓存
/**
* 要执行的算法,返回结果v
*/
public interface Computable<A, V> {
public V comput(final A arg);
}
/**
* 用于缓存数据
*/
public class Memoizer<A, V> implements Computable<A,
- 三点定位的算法
haoningabc
c算法
三点定位,
已知a,b,c三个顶点的x,y坐标
和三个点都z坐标的距离,la,lb,lc
求z点的坐标
原理就是围绕a,b,c 三个点画圆,三个圆焦点的部分就是所求
但是,由于三个点的距离可能不准,不一定会有结果,
所以是三个圆环的焦点,环的宽度开始为0,没有取到则加1
运行
gcc -lm test.c
test.c代码如下
#include "stdi
- epoll使用详解
jimmee
clinux服务端编程epoll
epoll - I/O event notification facility在linux的网络编程中,很长的时间都在使用select来做事件触发。在linux新的内核中,有了一种替换它的机制,就是epoll。相比于select,epoll最大的好处在于它不会随着监听fd数目的增长而降低效率。因为在内核中的select实现中,它是采用轮询来处理的,轮询的fd数目越多,自然耗时越多。并且,在linu
- Hibernate对Enum的映射的基本使用方法
linzx0212
enumHibernate
枚举
/**
* 性别枚举
*/
public enum Gender {
MALE(0), FEMALE(1), OTHER(2);
private Gender(int i) {
this.i = i;
}
private int i;
public int getI
- 第10章 高级事件(下)
onestopweb
事件
index.html
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/
- 孙子兵法
roadrunners
孙子兵法
始计第一
孙子曰:
兵者,国之大事,死生之地,存亡之道,不可不察也。
故经之以五事,校之以计,而索其情:一曰道,二曰天,三曰地,四曰将,五
曰法。道者,令民于上同意,可与之死,可与之生,而不危也;天者,阴阳、寒暑
、时制也;地者,远近、险易、广狭、死生也;将者,智、信、仁、勇、严也;法
者,曲制、官道、主用也。凡此五者,将莫不闻,知之者胜,不知之者不胜。故校
之以计,而索其情,曰
- MySQL双向复制
tomcat_oracle
mysql
本文包括:
主机配置
从机配置
建立主-从复制
建立双向复制
背景
按照以下简单的步骤:
参考一下:
在机器A配置主机(192.168.1.30)
在机器B配置从机(192.168.1.29)
我们可以使用下面的步骤来实现这一点
步骤1:机器A设置主机
在主机中打开配置文件 ,
- zoj 3822 Domination(dp)
阿尔萨斯
Mina
题目链接:zoj 3822 Domination
题目大意:给定一个N∗M的棋盘,每次任选一个位置放置一枚棋子,直到每行每列上都至少有一枚棋子,问放置棋子个数的期望。
解题思路:大白书上概率那一张有一道类似的题目,但是因为时间比较久了,还是稍微想了一下。dp[i][j][k]表示i行j列上均有至少一枚棋子,并且消耗k步的概率(k≤i∗j),因为放置在i+1~n上等价与放在i+1行上,同理