- 统计学中的样本&概率论中的样本
phoenix@Capricornus
模式识别中的数学问题概率论
不知道当初谁想的把概率论和数理统计合并,作为一门课。这本身是可以合并,完整的一条线,看这里。但是,作为任课老师应该从整体上交代清楚,毕竟是两个学科,不同的学科合并必然会有各种不协调的问题。举个最基本的名词冲突的例子。统计学中的样本在统计学中,样本是从总体(Population)中选取的一部分个体或观测值。它用来代表整个总体,并用于估计总体的特征或参数。例如,如果我们想了解一个城市居民的平均收入,我
- 【13】地址-比特币区块链的地址
AlieNeny
从零到一开发自己的区块链区块链分布式账本哈希算法
1.比特币区块链的地址这就是一个真实的比特币地址:1A1zP1eP5QGefi2DMPTfTL5SLmv7DivfNa。这是史上第一个比特币地址,据说属于中本聪。比特币地址是完全公开的,如果你想要给某个人发送币,只需要知道他的地址就可以了。实际上,所谓的地址,只不过是将公钥表示成人类可读的形式而已。2.密码学相关算法和概念
- 密码学领域三大经典难题:DLP、IFP 与 ECDLP
软件职业规划
经典难题密码学网络服务器
离散对数问题(DLP)基本概念:在有限循环群GGG(通常是整数模ppp乘法群Zp∗Z_p^*Zp∗,其中ppp为素数)中,给定一个生成元ggg和元素h=gxh=g^xh=gx(xxx为整数),离散对数问题是求出整数xxx。例如,在群Z17∗Z_{17}^*Z17∗中,生成元g=3g=3g=3,如果h=12h=12h=12,要求出满足3x≡12(mod17)3^x\equiv12\(mod\17)3
- 全面解析物联网信息安全知识体系
无声远望
本文还有配套的精品资源,点击获取简介:本资料集详细介绍物联网信息安全的多个重要方面,包括基础概念、数学基础、数据安全与隐私保护、集成安全技术、安全分析、防护策略和身份认证。从基本的物联网安全概念到深度探讨密码学基础,再到数据保护技术,再到全面的系统安全设计,安全分析,防御措施以及身份验证技术,这些内容将为研究者、开发者和管理者提供物联网安全的全面视角。1.物联网信息安全基础概念在现代技术不断发展的
- P3978 [TJOI2015] 概率论
洛谷之蒟蒻
概率论
题目描述为了提高智商,ZJY开始学习概率论。有一天,她想到了这样一个问题:对于一棵随机生成的n个结点的有根二叉树(所有互相不同构的形态等概率出现),它的叶子节点数的期望是多少呢?判断两棵树是否同构的伪代码如下:算法1Check(T1,T2)Require:两棵树的节点ifT1=nullorT2=nullthenreturnT1=nullandT2=nullelsereturnCheck(T1→le
- 线性代数 第七讲 二次型_标准型_规范型_坐标变换_合同_正定二次型详细讲解_重难点题型总结
二叉树果实
线性代数线性代数
文章目录1.二次型1.1二次型、标准型、规范型、正负惯性指数、二次型的秩1.2坐标变换1.3合同1.4正交变换化为标准型1.5可逆线性变换和正交变换1.6二次型化标准形,二次型化规范形的联系思考1.8两个二次型联系的思考1.9对于配方法问题的深入思考2.二次型的主要定理3.正定二次型与正定矩阵4.重难点题型总结4.1配方法将二次型化为标准型4.2正交变换法将二次型化为标准型4.3规范型确定取值范围
- 想转行到人工智能领域,我该学什么,怎么学?
张登杰踩
人工智能python
转行到人工智能(AI)领域需要系统的学习和实践,以下是详细的路径建议,涵盖基础知识、技能学习、项目实践和求职准备:一、明确目标和领域方向人工智能领域广泛,建议先了解细分方向(如机器学习、深度学习、计算机视觉、自然语言处理、强化学习等),结合兴趣和职业规划选择切入点。二、构建基础知识1.数学基础线性代数:矩阵运算、特征值、向量空间。微积分:导数、梯度、优化理论。概率与统计:贝叶斯定理、分布、假设检验
- AI需要的基础数学知识
大囚长
机器学习大模型人工智能
AI(人工智能)涉及多个数学领域,以下是主要的基础数学知识:1.线性代数矩阵与向量:用于表示数据和模型参数。矩阵乘法:用于神经网络的前向传播。特征值与特征向量:用于降维和主成分分析(PCA)。奇异值分解(SVD):用于数据压缩和降维。2.微积分导数与偏导数:用于优化算法(如梯度下降)。链式法则:用于反向传播算法。积分:在概率和统计中有应用。3.概率与统计概率分布:如高斯分布、伯努利分布等。贝叶斯定
- 物联网导论复习材料
物腐虫生
物联网学习
简答题Q1:物联网的概述,特点,模型,应用,重点是应用层,云计算,数据集成。物联网的概述物联网(IoT,InternetofThings)是指通过各种传感器、设备和网络技术,将物理世界中的物体连接到互联网,实现数据的采集、传输、处理和应用的智能化系统。物联网的特点全面感知:通过传感器实时采集数据。可靠传输:通过互联网和无线网络传输数据。智能处理:利用云计算和大数据技术对数据进行分析和处理,实现智能
- Kotlin语言的数据结构
网络空间站
包罗万象golang开发语言后端
Kotlin语言的数据结构导论Kotlin是一种现代化的编程语言,具有简洁、安全和高效的特点。Kotlin不仅支持面向对象编程,还融入了函数式编程的概念,使得开发者能够以更优雅的方式处理数据。在构建复杂应用时,数据结构的选择及其实现方式至关重要。本篇文章将全面介绍Kotlin中常用的数据结构,包括数组、集合、映射等,并探讨它们的特性、用途及实现方式。一、数组(Array)在Kotlin中,数组是一
- svm python 模型绘图_1SVM处理数据并绘图
张炜大师傅
svmpython模型绘图
爬虫Python基础、数据分析扩展包Numpy、pandas、matplotlib,Python读取MySQL数据,Python爬虫及Scrapy框架,无监督机器学习算法聚类分析等,以及案例:互联网金融行业客户价值分析等。机器学习机器学习是一门多领域交叉学科,涉及概率论、统计学、逼近论、凸分析、算法复杂度理论等多门学科。专门研究计算机怎样模拟或实现人类的学习行为,以获取新的知识或技能,重新组织已有
- 全网最详细Gradio教程系列2——Gradio的安装与运行
龙焰智能
Gradio全解教程Gradio安装运行热重载
全网最详细Gradio教程系列2——Gradio的安装与运行前言实战导论:2.Gradio的安装与运行2.1安装2.1.1Windows安装Gradio2.1.2MacOS/Linux安装Gradio2.2运行2.2.1普通方式运行2.2.2热重载运行2.2.2.1命令行式热重载2.2.2.2Notebook热重载2.2.2.3控制热重载参考文献前言本系列文章主要介绍WEB界面工具Gradio。G
- 【AI中数学-概率论-综合实例-包括python实现】 预测的守望者:动态贝叶斯网络在风险预警中的应用
云博士的AI课堂
AI中的数学人工智能概率论python贝叶斯网络机器学习AI数学
第四章:概率论-综合实例第2节预测的守望者:动态贝叶斯网络在风险预警中的应用在许多现实世界的应用中,预测和风险评估通常不仅依赖于静态的输入数据,而是需要考虑时间维度和动态变化。动态贝叶斯网络(DBN,DynamicBayesianNetwork)作为一种扩展了传统贝叶斯网络的工具,可以有效地处理时间序列数据,并进行时序预测。与静态贝叶斯网络不同,DBN能够通过建模系统状态随时间的变化,揭示出更为复
- 服务治理导论
daiwei-dave
服务治理java分布式数据库
一、服务治理背景1.高并发带来的问题1.io压力过大连接池只有这么多连接资源,短时间大量请求,资源很快会耗尽,那么其他连接请求就只有被阻塞等待了。2.cpu压力过大一个线程处理的内容运算量比较大,一直占用着CPU,如果短时间成百上千的请求同时占用CPU,那么CPU压力也好比较大。2.服务雪崩1.导致雪崩的常见原因1.大流量请求2.硬件故障3.缓存击穿3.高性能之道高性能程序就是高效的利用CPU、内
- 【线性代数】列主元法求矩阵的逆
BlackPercy
线性代数Julialang线性代数矩阵机器学习
列主元方法是一种用于求解矩阵逆的数值方法,特别适用于在计算机上实现。其基本思想是通过高斯消元法将矩阵转换为上三角矩阵,然后通过回代求解矩阵的逆。以下是列主元方法求解矩阵AAA的逆的步骤:步骤1:初始化构造增广矩阵[A∣I][A|I][A∣I],其中III是nnn阶单位矩阵。步骤2:列主元选择对于第kkk列(k=1,2,…,nk=1,2,\ldots,nk=1,2,…,n),找到列主元,即找到iki
- 区块链的数学基础:核心原理与应用解析
一休哥助手
区块链
引言区块链技术作为分布式账本系统,成功地解决了传统中心化系统中的信任问题。其背后隐藏着复杂而精妙的数学原理,包括密码学、哈希函数、数字签名、椭圆曲线、零知识证明等。这些数学工具不仅为区块链提供了安全保障,也为智能合约和去中心化应用(DApps)的开发奠定了基础。本文将深入剖析区块链中的核心数学基础,帮助读者理解其工作原理与实际应用。一、区块链数学基础概述区块链的数学基础可以分为以下几个核心领域:密
- 数学:机器学习的理论基石
每天五分钟玩转人工智能
机器学习人工智能
一、数学:机器学习的理论基石机器学习是一种通过数据学习模式和规律的科学。其核心目标是从数据中提取有用的信息,以便对未知数据进行预测和分类。为了实现这一目标,机器学习需要一种数学框架来描述和解决问题。数学在机器学习中起着至关重要的作用,它提供了一种数学模型来描述数据和模式,以及一种数学方法来优化模型。数学在机器学习中的应用非常广泛,涵盖了线性代数、概率论、统计学、微积分、优化等多个领域。这些数学方法
- 凸优化学习
qiaoxinyu10623
凸优化1024程序员节
认为学习凸优化理论比较合适的路径是:学习/复习线性代数和(少量)高等数学的知识。实际上,凸优化理论综合使用了线性代数和微积分的相关知识,比如方向导数,雅克比矩阵,海森矩阵,KKT条件等。这里强烈推荐MIT公开课《线性代数》,GilbertStrang教授主讲,完全不是照本宣科,而是注重几何解释,非常具有启发性,学完之后,你会对线性代数有全新的认识。学习视频:-UP主汉语配音-【线性代数的本质】合集
- 人工智能学习路线全链路解析
power-辰南
大模型算法实战工程人工智能学习机器学习
一、基础准备阶段(预计2-3个月)(一)数学知识巩固与深化线性代数(约1个月):矩阵基础:回顾矩阵的定义、表示方法、矩阵的基本运算(加法、减法、乘法),理解矩阵乘法不满足交换律等特性,通过练习题加深对运算规则的掌握,例如计算简单的矩阵乘法式子、求矩阵的转置等。向量空间与线性变换:学习向量空间的概念,包括向量的线性组合、线性相关与线性无关,掌握线性变换的定义、几何意义以及如何用矩阵表示线性变换,借助
- 计算机网络破译密码的题目,密码习题及部分参考答案.doc
耿礼勇
计算机网络破译密码的题目
一、密码学概述部分:1、什么是密码体制的五元组。五元组(M,C,K,E,D)构成密码体制模型,M代表明文空间;C代表密文空间;K代表密钥空间;E代表加密算法;D代表解密算法2、简述口令和密码的区别。密码:按特定法则编成,用以对通信双方的信息进行明、密变换的符号。换而言之,密码是隐蔽了真实内容的符号序列。就是把用公开的、标准的信息编码表示的信息通过一种变换手段,将其变为除通信双方以外其他人所不能读懂
- 计算机密码体制分为哪两类,密码体制的分类.ppt
约会师老马
计算机密码体制分为哪两类
密码体制的分类.ppt密码学基本理论现代密码学起始于20世纪50年代,1949年Shannon的《TheCommunicationTheoryofSecretSystems》奠定了现代密码学的数学理论基础。密码体制分类(1)换位与代替密码体制序列与分组密码体制对称与非对称密钥密码体制数学理论数论信息论复杂度理论数论--数学皇后素数互素模运算,模逆元同余方程组,孙子问题,中国剩余定理因子分解素数梅森
- Python字典详解
2401_89224765
python开发语言
print(dict4)需要注意的是:fromkeys方法只用来创建新字典,不负责保存。当通过一个字典来调用fromkeys方法时,如果需要后续使用一定记得给他复制给其他的变量。②访问字典:第一阶段:基操勿6!如果要想获取字典中某个键的值,可以通过访问键的方式来显示对应的值。上代码:dict={‘线代’:“99”,“数据分析”:“99”,“概率论”:“98”}#创建字典print(‘小红同学的线代
- 《深入浅出HTTPS》读书笔记(29):TLS/SSL协议
earthzhang2021
网络协议算法开发语言httpsssl
《深入浅出HTTPS》读书笔记(29):TLS/SSL协议TLS/SSL协议是一系列算法的组合,相比密码学算法来说,TLS/SSL协议的复杂性就更大了,主要体现在以下方面。◎协议设计的复杂性:一个完整的解决方案考虑的问题非常多,需要考虑扩展性、适用性、性能等方面,一旦方案设计不充分,攻击者不用攻击特定的密码学算法,而会基于协议进行攻击。◎协议实现的严谨性:即使协议设计是完美的,在实现协议的时候,也
- 【机器学习】从零开始,用线性代数解锁智能时代的钥匙!
eclipsercp
工具毕业设计python机器学习线性代数人工智能
【机器学习】从零开始,用线性代数解锁智能时代的钥匙!文章目录【机器学习】从零开始,用线性代数解锁智能时代的钥匙!引言在这个数据驱动的时代,机器学习已经成为解锁智能科技的关键。但你是否曾被复杂的数学公式和算法搞得晕头转向?别担心,这篇文章将带你从零开始,用最直观的方式掌握线性代数——机器学习的核心武器!线性代数:机器学习的基石向量:数据的基本单元Python代码示例:向量操作矩阵:多维数据的集合Py
- 【概率论与数理统计】第三章 多维随机变量及其分布(3)
Arthur古德曼
概率论与数理统计概率论多维随机变量二维随机变量独立性概率分布夏明亮
2随机变量的独立性2.1两个随机变量的独立性在多维随机变量中各分量的取值有时会互相影响,但有时也会毫无影响。例如,一个人的身高XXX和体重YYY之间就会互相影响,但与收入ZZZ一般就没什么影响。这里,我们根据两个事件的独立性引出两个随机变量的独立性:之前我们这样描述:事件{X≤x}\{X\lex\}{X≤x}与事件{Y≤y}\{Y\ley\}{Y≤y}的积事件{X≤x,Y≤y}\{X\lex,\Y
- MurmurHash Tips(qbit)
pythonjavahash
简介MurmurHash是一种非加密型哈希函数(Non-cryptographichashfunction),适用于一般的哈希检索操作。与其它流行的哈希函数相比,对于规律性较强的key,MurmurHash的随机分布特征表现更良好。常见的MD5、SHA1是加密型哈希函数(Cryptographichashfunction)Hash算法评价杨保华《区块链·原理、设计与应用》第5章密码学与安全技术中讲
- 高端密码学院笔记285
柚子_b4b4
高端幸福密码学院(高级班)幸福使者:李华第(598)期《幸福》之回归内在深层生命原动力基础篇——揭秘“激励”成长的喜悦心理案例分析主讲:刘莉一,知识扩充:成功=艰苦劳动+正确方法+少说空话。贪图省力的船夫,目标永远下游。智者的梦再美,也不如愚人实干的脚印。幸福早课堂2020.10.16星期五一笔记:1,重视和珍惜的前提是知道它的价值非常重要,当你珍惜了,你就真正定下来,真正的学到身上。2,大家需要
- 【树一线性代数】005入门
Owlet_woodBird
算法
Index本文稍后补全,推荐阅读:https://blog.csdn.net/weixin_60702024/article/details/141874376分析实现总结本文稍后补全,推荐阅读:https://blog.csdn.net/weixin_60702024/article/details/141874376已知非空二叉树T的结点值均为正整数,采用顺序存储方式保存,数据结构定义如下:t
- Tor Browser配置方法
淡水猫.
网络安全服务器
密码学中有两种常见的加密方式:对称加密:加密和解密使用同一个秘钥,如AES、DES等算法。非对称加密:加密和解密使用不相同的密钥,这两个秘钥分别称为公钥(publickey)和私钥(privatekey)——也就是说私钥可以解开公钥加密的数据,反之亦然(很神奇的数学原理)。Tor是一个三重代理(也就是说Tor每发出一个请求会先经过Tor网络的3个节点),其网络中有两种主要服务器角色:中继服务器:负
- 如何有效的学习AI大模型?
Python程序员罗宾
学习人工智能语言模型自然语言处理架构
学习AI大模型是一个系统性的过程,涉及到多个学科的知识。以下是一些建议,帮助你更有效地学习AI大模型:基础知识储备:数学基础:学习线性代数、概率论、统计学和微积分等,这些是理解机器学习算法的数学基础。编程技能:掌握至少一种编程语言,如Python,因为大多数AI模型都是用Python实现的。理论学习:机器学习基础:了解监督学习、非监督学习、强化学习等基本概念。深度学习:学习神经网络的基本结构,如卷
- [黑洞与暗粒子]没有光的世界
comsci
无论是相对论还是其它现代物理学,都显然有个缺陷,那就是必须有光才能够计算
但是,我相信,在我们的世界和宇宙平面中,肯定存在没有光的世界....
那么,在没有光的世界,光子和其它粒子的规律无法被应用和考察,那么以光速为核心的
&nbs
- jQuery Lazy Load 图片延迟加载
aijuans
jquery
基于 jQuery 的图片延迟加载插件,在用户滚动页面到图片之后才进行加载。
对于有较多的图片的网页,使用图片延迟加载,能有效的提高页面加载速度。
版本:
jQuery v1.4.4+
jQuery Lazy Load v1.7.2
注意事项:
需要真正实现图片延迟加载,必须将真实图片地址写在 data-original 属性中。若 src
- 使用Jodd的优点
Kai_Ge
jodd
1. 简化和统一 controller ,抛弃 extends SimpleFormController ,统一使用 implements Controller 的方式。
2. 简化 JSP 页面的 bind, 不需要一个字段一个字段的绑定。
3. 对 bean 没有任何要求,可以使用任意的 bean 做为 formBean。
使用方法简介
- jpa Query转hibernate Query
120153216
Hibernate
public List<Map> getMapList(String hql,
Map map) {
org.hibernate.Query jpaQuery = entityManager.createQuery(hql);
if (null != map) {
for (String parameter : map.keySet()) {
jp
- Django_Python3添加MySQL/MariaDB支持
2002wmj
mariaDB
现状
首先,
[email protected] 中默认的引擎为 django.db.backends.mysql 。但是在Python3中如果这样写的话,会发现 django.db.backends.mysql 依赖 MySQLdb[5] ,而 MySQLdb 又不兼容 Python3 于是要找一种新的方式来继续使用MySQL。 MySQL官方的方案
首先据MySQL文档[3]说,自从MySQL
- 在SQLSERVER中查找消耗IO最多的SQL
357029540
SQL Server
返回做IO数目最多的50条语句以及它们的执行计划。
select top 50
(total_logical_reads/execution_count) as avg_logical_reads,
(total_logical_writes/execution_count) as avg_logical_writes,
(tot
- spring UnChecked 异常 官方定义!
7454103
spring
如果你接触过spring的 事物管理!那么你必须明白 spring的 非捕获异常! 即 unchecked 异常! 因为 spring 默认这类异常事物自动回滚!!
public static boolean isCheckedException(Throwable ex)
{
return !(ex instanceof RuntimeExcep
- mongoDB 入门指南、示例
adminjun
javamongodb操作
一、准备工作
1、 下载mongoDB
下载地址:http://www.mongodb.org/downloads
选择合适你的版本
相关文档:http://www.mongodb.org/display/DOCS/Tutorial
2、 安装mongoDB
A、 不解压模式:
将下载下来的mongoDB-xxx.zip打开,找到bin目录,运行mongod.exe就可以启动服务,默
- CUDA 5 Release Candidate Now Available
aijuans
CUDA
The CUDA 5 Release Candidate is now available at http://developer.nvidia.com/<wbr></wbr>cuda/cuda-pre-production. Now applicable to a broader set of algorithms, CUDA 5 has advanced fe
- Essential Studio for WinRT网格控件测评
Axiba
JavaScripthtml5
Essential Studio for WinRT界面控件包含了商业平板应用程序开发中所需的所有控件,如市场上运行速度最快的grid 和chart、地图、RDL报表查看器、丰富的文本查看器及图表等等。同时,该控件还包含了一组独特的库,用于从WinRT应用程序中生成Excel、Word以及PDF格式的文件。此文将对其另外一个强大的控件——网格控件进行专门的测评详述。
网格控件功能
1、
- java 获取windows系统安装的证书或证书链
bewithme
windows
有时需要获取windows系统安装的证书或证书链,比如说你要通过证书来创建java的密钥库 。
有关证书链的解释可以查看此处 。
public static void main(String[] args) {
SunMSCAPI providerMSCAPI = new SunMSCAPI();
S
- NoSQL数据库之Redis数据库管理(set类型和zset类型)
bijian1013
redis数据库NoSQL
4.sets类型
Set是集合,它是string类型的无序集合。set是通过hash table实现的,添加、删除和查找的复杂度都是O(1)。对集合我们可以取并集、交集、差集。通过这些操作我们可以实现sns中的好友推荐和blog的tag功能。
sadd:向名称为key的set中添加元
- 异常捕获何时用Exception,何时用Throwable
bingyingao
用Exception的情况
try {
//可能发生空指针、数组溢出等异常
} catch (Exception e) {
 
- 【Kafka四】Kakfa伪分布式安装
bit1129
kafka
在http://bit1129.iteye.com/blog/2174791一文中,实现了单Kafka服务器的安装,在Kafka中,每个Kafka服务器称为一个broker。本文简单介绍下,在单机环境下Kafka的伪分布式安装和测试验证 1. 安装步骤
Kafka伪分布式安装的思路跟Zookeeper的伪分布式安装思路完全一样,不过比Zookeeper稍微简单些(不
- Project Euler
bookjovi
haskell
Project Euler是个数学问题求解网站,网站设计的很有意思,有很多problem,在未提交正确答案前不能查看problem的overview,也不能查看关于problem的discussion thread,只能看到现在problem已经被多少人解决了,人数越多往往代表问题越容易。
看看problem 1吧:
Add all the natural num
- Java-Collections Framework学习与总结-ArrayDeque
BrokenDreams
Collections
表、栈和队列是三种基本的数据结构,前面总结的ArrayList和LinkedList可以作为任意一种数据结构来使用,当然由于实现方式的不同,操作的效率也会不同。
这篇要看一下java.util.ArrayDeque。从命名上看
- 读《研磨设计模式》-代码笔记-装饰模式-Decorator
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
import java.io.BufferedOutputStream;
import java.io.DataOutputStream;
import java.io.FileOutputStream;
import java.io.Fi
- Maven学习(一)
chenyu19891124
Maven私服
学习一门技术和工具总得花费一段时间,5月底6月初自己学习了一些工具,maven+Hudson+nexus的搭建,对于maven以前只是听说,顺便再自己的电脑上搭建了一个maven环境,但是完全不了解maven这一强大的构建工具,还有ant也是一个构建工具,但ant就没有maven那么的简单方便,其实简单点说maven是一个运用命令行就能完成构建,测试,打包,发布一系列功
- [原创]JWFD工作流引擎设计----节点匹配搜索算法(用于初步解决条件异步汇聚问题) 补充
comsci
算法工作PHP搜索引擎嵌入式
本文主要介绍在JWFD工作流引擎设计中遇到的一个实际问题的解决方案,请参考我的博文"带条件选择的并行汇聚路由问题"中图例A2描述的情况(http://comsci.iteye.com/blog/339756),我现在把我对图例A2的一个解决方案公布出来,请大家多指点
节点匹配搜索算法(用于解决标准对称流程图条件汇聚点运行控制参数的算法)
需要解决的问题:已知分支
- Linux中用shell获取昨天、明天或多天前的日期
daizj
linuxshell上几年昨天获取上几个月
在Linux中可以通过date命令获取昨天、明天、上个月、下个月、上一年和下一年
# 获取昨天
date -d 'yesterday' # 或 date -d 'last day'
# 获取明天
date -d 'tomorrow' # 或 date -d 'next day'
# 获取上个月
date -d 'last month'
#
- 我所理解的云计算
dongwei_6688
云计算
在刚开始接触到一个概念时,人们往往都会去探寻这个概念的含义,以达到对其有一个感性的认知,在Wikipedia上关于“云计算”是这么定义的,它说:
Cloud computing is a phrase used to describe a variety of computing co
- YII CMenu配置
dcj3sjt126com
yii
Adding id and class names to CMenu
We use the id and htmlOptions to accomplish this. Watch.
//in your view
$this->widget('zii.widgets.CMenu', array(
'id'=>'myMenu',
'items'=>$this-&g
- 设计模式之静态代理与动态代理
come_for_dream
设计模式
静态代理与动态代理
代理模式是java开发中用到的相对比较多的设计模式,其中的思想就是主业务和相关业务分离。所谓的代理设计就是指由一个代理主题来操作真实主题,真实主题执行具体的业务操作,而代理主题负责其他相关业务的处理。比如我们在进行删除操作的时候需要检验一下用户是否登陆,我们可以删除看成主业务,而把检验用户是否登陆看成其相关业务
- 【转】理解Javascript 系列
gcc2ge
JavaScript
理解Javascript_13_执行模型详解
摘要: 在《理解Javascript_12_执行模型浅析》一文中,我们初步的了解了执行上下文与作用域的概念,那么这一篇将深入分析执行上下文的构建过程,了解执行上下文、函数对象、作用域三者之间的关系。函数执行环境简单的代码:当调用say方法时,第一步是创建其执行环境,在创建执行环境的过程中,会按照定义的先后顺序完成一系列操作:1.首先会创建一个
- Subsets II
hcx2013
set
Given a collection of integers that might contain duplicates, nums, return all possible subsets.
Note:
Elements in a subset must be in non-descending order.
The solution set must not conta
- Spring4.1新特性——Spring缓存框架增强
jinnianshilongnian
spring4
目录
Spring4.1新特性——综述
Spring4.1新特性——Spring核心部分及其他
Spring4.1新特性——Spring缓存框架增强
Spring4.1新特性——异步调用和事件机制的异常处理
Spring4.1新特性——数据库集成测试脚本初始化
Spring4.1新特性——Spring MVC增强
Spring4.1新特性——页面自动化测试框架Spring MVC T
- shell嵌套expect执行命令
liyonghui160com
一直都想把expect的操作写到bash脚本里,这样就不用我再写两个脚本来执行了,搞了一下午终于有点小成就,给大家看看吧.
系统:centos 5.x
1.先安装expect
yum -y install expect
2.脚本内容:
cat auto_svn.sh
#!/bin/bash
- Linux实用命令整理
pda158
linux
0. 基本命令 linux 基本命令整理
1. 压缩 解压 tar -zcvf a.tar.gz a #把a压缩成a.tar.gz tar -zxvf a.tar.gz #把a.tar.gz解压成a
2. vim小结 2.1 vim替换 :m,ns/word_1/word_2/gc  
- 独立开发人员通向成功的29个小贴士
shoothao
独立开发
概述:本文收集了关于独立开发人员通向成功需要注意的一些东西,对于具体的每个贴士的注解有兴趣的朋友可以查看下面标注的原文地址。
明白你从事独立开发的原因和目的。
保持坚持制定计划的好习惯。
万事开头难,第一份订单是关键。
培养多元化业务技能。
提供卓越的服务和品质。
谨小慎微。
营销是必备技能。
学会组织,有条理的工作才是最有效率的。
“独立
- JAVA中堆栈和内存分配原理
uule
java
1、栈、堆
1.寄存器:最快的存储区, 由编译器根据需求进行分配,我们在程序中无法控制.2. 栈:存放基本类型的变量数据和对象的引用,但对象本身不存放在栈中,而是存放在堆(new 出来的对象)或者常量池中(字符串常量对象存放在常量池中。)3. 堆:存放所有new出来的对象。4. 静态域:存放静态成员(static定义的)5. 常量池:存放字符串常量和基本类型常量(public static f