- bash方式启动模型训练
BILLY BILLY
深度学习基础开发必备工具自动驾驶
export\PATHPYTHONPATH=/workspace/mmlab/mmdetection/:/workspace/mmlab/mmsegmentation/:/workspace/mmlab/mmdeploy/:${env:PYTHONPATH}\CUDA_VISIBLE_DEVICES=0\DATA_ROOT_1=/mnt/data/…/\DATA_ROOT_2=/mnt/data/
- 传统检测响应慢?陌讯多模态引擎提速90+FPS实战
2501_92473147
算法计算机视觉目标检测
开篇痛点:实时目标检测在安防监控中的核心挑战在安防监控领域,实时目标检测是保障公共安全的关键技术。然而,传统算法如YOLOv5或开源框架MMDetection常面临两大痛点:误报率高(复杂光照或遮挡场景下检测不稳定)和响应延迟(高分辨率视频流处理FPS低于30)。实测数据显示,城市交通监控系统误报率达15%,导致安保资源浪费;客户反馈表明,延迟超100ms时,目标跟踪可能失效。这些问题源于算法泛化
- mot数据集_MOT数据集转化成VOC格式脚本(mot2voc)
飞啦不休
mot数据集
使用mmdetection检测框架进行相关的训练,由于MOT的数据集标注格式和检测常用的VOC以及COCO格式有很大的差距,因此用于检测任务的时候,需要将mot格式的数据集转化成VOC格式用于检测任务的训练,评估。HUST小菜鸡:将MOT17-Det数据集转成VOC格式zhuanlan.zhihu.com之前我写过一篇将MOT17转化成VOC格式的文章,但是该方法是一个分布的步骤,而且在实际操作过
- 深度学习计算机视觉开源系统OpenMMLab(mmsegmentation、mmdetection、mmpose)环境配置【详细、可运行】
nomoremorphine
深度学习计算机视觉开源
OpenMMLab(mmsegmentation、mmdetection、mmpose)环境配置OpenMMLab简介优势:一、Windows/Linux下环境配置(以mmsegmentationv1.2.2(最新版)为例)0.确认安装版本信息1)确认电脑显卡版本2)确认mmcv对应版本3)确认版本1.安装CUDA和cuDNN2.创建conda环境,下载pytorch3.安装mmcv4.安装MMS
- mmdetection3d系列--(1)安装步骤(无坑版)
h i i l
mmdetection3d目标检测计算机视觉自动驾驶深度学习pytorch
最近在看一些基于点云3d目标检测的文章,需要复现甚至修改一些算法,就找到了mmlab开源的mmdetection3d目标检测框架,方便后续学习。在安装的时候遇到一点坑,比如环境问题,安装完能跑demo但是不能跑训练测试问题等。在解决问题后还是完成了安装。在这里记录一下正确的安装流程,已备再次查阅,也给大家提供一点参考。首先建环境,最好是新建一个环境condacreate-ndetpython=3.
- Ubuntu20.04LTS 安装 mmdetection 全记录
Ubuntu20.04LTS安装mmdetection全记录环境需求准备工作anaconda安装gcc/g++安装安装nvidia显卡驱动安装CUDA正式安装mmdetection创建一个conda虚拟环境安装PyTorch和Torchvision安装mmcvmmdetection安装后记环境需求Requirements:·Linux(Windowsisnotofficiallysupported
- MMDet实例分割loss_rpn_bbox为nan但其它loss正常的解决
MWHLS
pythonpythonpytorch深度学习人工智能
文章首发见博客:https://mwhls.top/4901.html。无图/格式错误/后续更新请见首发页。更多更新请到mwhls.top查看欢迎留言提问或批评建议,私信不回。昨天还以为这个月无活可整,没想到第二天就来事了,下个月还好久,留到下月发也不大好(º﹃º)。问题描述使用MMDetection训练实例分割,训练可执行,测试可执行,但loss_rpn_bbox为nan,loss_bbox却有
- 使用 MMDetection 实现 Pascal VOC 数据集的目标检测项目练习(一) 开端
深蓝海拓
PascalVOC图像集的练习项目目标检测人工智能计算机视觉pytorch深度学习
一、背景知识PascalVOCPascalVOC(PatternAnalysis,StaticalModelingandComputationalLearning和VisualObjectClasses)是一个知名的计算机视觉数据集,专注于目标检测、图像分割等任务。它包含20个不同物体类别的图像注释,如人、动物、交通工具等。PascalVOC挑战赛自2005年至2012年每年举办,其中VOC200
- error: subprocess-exited-with-error【已解决】
AI浩
疑难问题chrome前端
问题详述安装mmdetection的时候出现了如下错误:(mmdet)[root@localhostmmdetection]#Usingpip25.1.1from/root/mmdet/lib64/python3.9/site-packages/pip(python3.9)-bash:syntaxerrornearunexpectedtoken`('(mmdet)[root@localhostmm
- vscode调试常用选项
不要绝望总会慢慢变强
视觉大作战vscode
在vscode调试过程中,存在一个文件来控制调试的相关选项,位置为mmdetection/.vscode/launch.json{//UseIntelliSensetolearnaboutpossibleattributes.//Hovertoviewdescriptionsofexistingattributes.//Formoreinformation,visit:https://go.mic
- mmdeploy 转换torch为onnx
选与握
#openmmlabmmdeploy
安装mmdeploy以前已经安装了相关的mmsegment、mmcv和mmdetection等库方式安装mmdeploy:pipinstallmmdeploy或者,也可以从源代码安装,注意分支版本:gitclonehttps://github.com/open-mmlab/mmdeploy.gitcdmmdeploypipinstall-e.应用torch转onnx使用MMDeploy中的工具to
- 装饰器在Python中的作用及在PyTorchMMDetection中的实战应用
_Itachi__
pythonpython开发语言
装饰器在Python中的作用1.装饰器是什么?为什么它很重要?装饰器(Decorator)是Python中的一种高级语法,用于在不修改原函数代码的情况下,动态增强函数的功能。它的核心思想是**"装饰"现有函数**,类似于给手机套壳——手机本身功能不变,但多了保护或附加功能。1.1装饰器的核心作用代码复用:避免重复写相同的逻辑(如日志、计时、权限检查)非侵入式扩展:不改动原函数代码就能添加功能提高可
- 【BUG】mmdetection ValueError: need at least one array to concatenate
何如千泷
BUGbugmmdetection
问题:使用mmdetection框架使用COCO格式训练自定义数据集时出现如下错误:ValueError:needatleastonearraytoconcatenate解决方法:修改mmdet/datasets/coco.py文件,将CocoDataset类中的METAINFO修改为自己数据集的类别信息,具体如下:#METAINFO={#'classes':#('person','bicycle
- MMdetection-教程5:自定义运行设置
闰土_RUNTU
目标检测MMdetectionpytorch深度学习人工智能
目录自定义优化设置自定义pytorch支持的优化器自定义自主实现的优化器1.定义一个新的优化器2.添加优化器到注册表3.在配置文件中指定优化器自定义优化器构造函数(optimizerconstructor)其他设置自定义训练策略(trainingschedules)自定义工作流(workflow)自定义钩子(hooks)定义自主实现的钩子使用MMCV实现的钩子修改默认的runtime钩子自定义优化
- MMDetection3D的安装问题,报错缺失libtorch_cuda_cu.so文件
V10LET_Yan
BEVformerpythonubuntu计算机视觉目标检测机器学习神经网络深度学习
前言这个系列是记录我个人在学习过程中,遇到的一些问题,并记录我成功的方法,真实有效MMDetecion3D本身的安装文档非常不利好于新人,所以在此记录了我遇到的坑与解决办法使用平台i7-12700k4070tiubuntu20.04conda虚拟环境中,python=3.8遇到的问题根据官方文档操作,前面全部安装成功,包括MMDetction3D也显示安装成功,但是仍然在运行他给出的demo:py
- 深度学习项目十一:mmdetection训练自己的数据集
小啊磊_Vv
深度学习和视觉项目实战目标跟踪人工智能计算机视觉python深度学习
mmdetection训练自己的数据集这里写目录标题mmdetection训练自己的数据集一:环境搭建二:数据集格式转换(yolo转coco格式)yolo数据集格式coco数据集格式yolo转coco数据集格式yolo转coco数据集格式的代码三:训练dataset数据文件配置configs1.在configs/faster_rcnn/faster-rcnn_r101_fpn_1x_coco.py
- MMDetection实用工具详解(上):日志分析、结果分析、混淆矩阵
MickeyCV
目标检测python深度学习linux目标检测
实用工具目录一、日志分析使用方法实际案例二、结果分析pkl结果文件生成使用方法实际案例三、混淆矩阵使用方法实际案例遇到的UserWarning解决方案MMDetection官方除了训练和测试脚本,他们还在mmdetection/tools/目录下提供了许多有用的工具。本帖先为大家重点介绍其中三个简单而实用的工具:日志分析、结果分析、混淆矩阵。一、日志分析tools/analysis_tools/a
- 征程 6 工具链 BEVPoolV2 算子使用教程 1 - BEVPoolV2 算子详解
算法自动驾驶
1.引言当前,地平线征程6工具链已经全面支持了BEVPoolingV2算子,并与mmdetection3d的实现完成了精准对齐。然而,需要注意的是,此算子因其内在的复杂性以及相关使用示例的稀缺,致使部分用户在实际运用过程中遭遇了与预期不符的诸多问题。在这样的背景下,本文首先会对BEVPoolingV2的实现进行全方位、细致入微的剖析讲解,,让复杂的原理变得清晰易懂。随后,还会通过代表性的示例,来进
- 记一次pytorch训练loss异常的问题
lyyiangang
pytorch人工智能python
记一次pytorch训练loss异常的问题问题描述使用mmdetection框架训练时,某项loss出现异常大的值,比如1781232349724294.000。这个问题只在多卡训练时才会出现。解决方法在确认target和predction没有问题后,发现是在dataset中的数据处理出现了问题。在dataset中的__getitem__函数中,对数据进行了处理,但是在处理时,将数据转换为了num
- 基于Kitti数据集实现MMDetection3D点云物体检测训练
Xian-HHappy
技术知识点kitti三维点云无人驾驶MMDetection3D人工智能计算机视觉目标检测
DataBall助力快速掌握数据集的信息和使用方式,会员享有百种数据集,持续增加中。需要更多数据资源和技术解决方案,知识星球:“DataBall-X数据球(free)”贵在坚持!-----------------------------------------------------------------------------------------------MMDetection3D环境安
- 利用MMDetection进行模型微调和权重初始化
MickeyCV
目标检测深度学习目标检测计算机视觉python
目录模型微调修改第一处:更少的训练回合Epoch修改第二处:更小的学习率LearningRate修改第三处:使用预训练模型权重初始化实际使用案例init_cfg的具体使用规则初始化器配置汇总本文基于MMDetection官方文档,对模型微调和权重初始化进行第三方讲解。模型微调在COCO数据集上预训练的检测器可以作为其他数据集优质的预训练模型。微调超参数与默认的训练策略不同。它通常需要更小的学习率和
- MMDetection3D v1.4.0安装教程
Ly.Leo
激光雷达神经网络点云3d激光雷达目标检测
安装MMDetection3Dv1.4.01.系统环境2.安装2.1基本环境安装2.2调整具体版本2.3验证2.3安装MinkowskiEngine和TorchSparse3.最终环境配置5.附加库根据v1.4.0版本官方手册测试后的安装配置,亲测可行。1.系统环境项目版本日期Ubuntu18.04.06LTS-显卡RTX2070-显卡驱动525.105.17-2.安装MMDetection3D的
- MIT-BEVFusion系列五--Nuscenes数据集详细介绍,有下载好的图片
端木的AI探索屋
bevfusion自动驾驶算法python人工智能目标检测
一、数据集部分mmdetection官方对Nuscenes的中文解释地址:https://mmdetection3d.readthedocs.io/zh_CN/latest/advanced_guides/datasets/nuscenes.htmlhttps://www.nuscenes.org/nuscenes#data-format1.1数据集概述 nuScenes数据集(pronou
- qt.qpa.plugin: Could not load the Qt platform plugin “xcb“ in
zisuina_2
pytorch深度学习qtpython
在运行mmdetection的时候发现qt5里面缺了啥qt.qpa.plugin:CouldnotloadtheQtplatformplugin“xcb”in“…”卸载了好多Qt5重新安装,都没有用尝试1:sudogedit~/.bashrc最后一行加上exportQT_DEBUG_PLUGINS=1对于我来说,没有效果尝试2:卸载qt5,重新安装,没啥用解决方案在虚拟环境中重新装opencv,对
- 【深度学习】:滴滴出行-交通场景目标检测
X.AI666
深度学习目标跟踪人工智能计算机视觉
清华大学驭风计划课程链接学堂在线-精品在线课程学习平台(xuetangx.com)代码和报告均为本人自己实现(实验满分),只展示主要任务实验结果,如果需要详细的实验报告或者代码可以私聊博主,接实验技术指导1对1有任何疑问或者问题,也欢迎私信博主,大家可以相互讨论交流哟~~案例5:滴滴出行-交通场景目标检测相关知识点:目标检测、开源框架的配置和使用(mmdetection,mmcv)1任务和数据简介
- 安装使用MMDeploy(Python版)
*Major*
人工智能python
安装使用MMDeploy(Python版)一安装MMDeploypythonmmdeploy-main/tools/deploy.pymmdeploy-main/configs/mmdet/detection/detection_tensorrt_dynamic-320x320-1344x1344.pymmdetection/configs/faster_rcnn/faster-rcnn_r50_
- mmdetection模型转onnx和tensorrt实战
dream_home8407
python深度学习人工智能
一,说明1.本次实战使用的是mmdetection算法框架中的Cascase-Rcnn训练的模型;2.模型转换时,运行环境中各种工具的版本要保持一致;3.TensorRT我一直装不上,我用的是镜像环境.参考链接:link二,使用Docker镜像1.0,镜像基础环境构建exportTAG=openmmlab/mmdeploy:ubuntu20.04-cuda11.8-mmdeploydockerpu
- mmdetection使用自己的voc数据集训练模型实战
dream_home8407
人工智能深度学习python
一.自己数据集整理将labelimg格式数据集进行整理1.1.更换图片后缀为jpgimportosimportshutilroot_path='/media/ai-developer/img'file=os.listdir(root_path)forimginfile:ifimg.endswith('jpeg')orimg.endswith('JPG')orimg.endswith('png'):
- AI 实战训练营(Class 1)OpenMMLab 概述
Zhangdd1208
MMLab实战训练营人工智能深度学习计算机视觉
AI实战训练营(Class1)OpenMMLab概述OpenMMLab概述OpenMMLab各开源算法库详细介绍明星算法库:MMDetectionMMYOLOMMOCRMMDetection3DMMRotateMMSegmentationMMpretrainMMposeMMHuman3DMMAction2MMagicMMDeployPlaygroundOpenMMLab开源生态OpenMMLab概
- mmocr 安装及快速运行
TYUT_xiaoming
mmocrocr
MMOCR是一个基于PyTorch和MMDetection的开源工具箱,支持众多OCR相关的模型,涵盖了文本检测、文本识别以及关键信息提取等多个主要方向。它还支持了大多数流行的学术数据集,并提供了许多实用工具帮助用户对数据集和模型进行多方面的探索和调试,助力优质模型的产出和落地。它具有以下特点:全流程,多模型:支持了全流程的OCR任务,包括文本检测、文本识别及关键信息提取的各种最新模型。模块化设计
- mongodb3.03开启认证
21jhf
mongodb
下载了最新mongodb3.03版本,当使用--auth 参数命令行开启mongodb用户认证时遇到很多问题,现总结如下:
(百度上搜到的基本都是老版本的,看到db.addUser的就是,请忽略)
Windows下我做了一个bat文件,用来启动mongodb,命令行如下:
mongod --dbpath db\data --port 27017 --directoryperdb --logp
- 【Spark103】Task not serializable
bit1129
Serializable
Task not serializable是Spark开发过程最令人头疼的问题之一,这里记录下出现这个问题的两个实例,一个是自己遇到的,另一个是stackoverflow上看到。等有时间了再仔细探究出现Task not serialiazable的各种原因以及出现问题后如何快速定位问题的所在,至少目前阶段碰到此类问题,没有什么章法
1.
package spark.exampl
- 你所熟知的 LRU(最近最少使用)
dalan_123
java
关于LRU这个名词在很多地方或听说,或使用,接下来看下lru缓存回收的实现
1、大体的想法
a、查询出最近最晚使用的项
b、给最近的使用的项做标记
通过使用链表就可以完成这两个操作,关于最近最少使用的项只需要返回链表的尾部;标记最近使用的项,只需要将该项移除并放置到头部,那么难点就出现 你如何能够快速在链表定位对应的该项?
这时候多
- Javascript 跨域
周凡杨
JavaScriptjsonp跨域cross-domain
 
- linux下安装apache服务器
g21121
apache
安装apache
下载windows版本apache,下载地址:http://httpd.apache.org/download.cgi
1.windows下安装apache
Windows下安装apache比较简单,注意选择路径和端口即可,这里就不再赘述了。 2.linux下安装apache:
下载之后上传到linux的相关目录,这里指定为/home/apach
- FineReport的JS编辑框和URL地址栏语法简介
老A不折腾
finereportweb报表报表软件语法总结
JS编辑框:
1.FineReport的js。
作为一款BS产品,browser端的JavaScript是必不可少的。
FineReport中的js是已经调用了finereport.js的。
大家知道,预览报表时,报表servlet会将cpt模板转为html,在这个html的head头部中会引入FineReport的js,这个finereport.js中包含了许多内置的fun
- 根据STATUS信息对MySQL进行优化
墙头上一根草
status
mysql 查看当前正在执行的操作,即正在执行的sql语句的方法为:
show processlist 命令
mysql> show global status;可以列出MySQL服务器运行各种状态值,我个人较喜欢的用法是show status like '查询值%';一、慢查询mysql> show variab
- 我的spring学习笔记7-Spring的Bean配置文件给Bean定义别名
aijuans
Spring 3
本文介绍如何给Spring的Bean配置文件的Bean定义别名?
原始的
<bean id="business" class="onlyfun.caterpillar.device.Business">
<property name="writer">
<ref b
- 高性能mysql 之 性能剖析
annan211
性能mysqlmysql 性能剖析剖析
1 定义性能优化
mysql服务器性能,此处定义为 响应时间。
在解释性能优化之前,先来消除一个误解,很多人认为,性能优化就是降低cpu的利用率或者减少对资源的使用。
这是一个陷阱。
资源时用来消耗并用来工作的,所以有时候消耗更多的资源能够加快查询速度,保持cpu忙绿,这是必要的。很多时候发现
编译进了新版本的InnoDB之后,cpu利用率上升的很厉害,这并不
- 主外键和索引唯一性约束
百合不是茶
索引唯一性约束主外键约束联机删除
目标;第一步;创建两张表 用户表和文章表
第二步;发表文章
1,建表;
---用户表 BlogUsers
--userID唯一的
--userName
--pwd
--sex
create
- 线程的调度
bijian1013
java多线程thread线程的调度java多线程
1. Java提供一个线程调度程序来监控程序中启动后进入可运行状态的所有线程。线程调度程序按照线程的优先级决定应调度哪些线程来执行。
2. 多数线程的调度是抢占式的(即我想中断程序运行就中断,不需要和将被中断的程序协商)
a) 
- 查看日志常用命令
bijian1013
linux命令unix
一.日志查找方法,可以用通配符查某台主机上的所有服务器grep "关键字" /wls/applogs/custom-*/error.log
二.查看日志常用命令1.grep '关键字' error.log:在error.log中搜索'关键字'2.grep -C10 '关键字' error.log:显示关键字前后10行记录3.grep '关键字' error.l
- 【持久化框架MyBatis3一】MyBatis版HelloWorld
bit1129
helloworld
MyBatis这个系列的文章,主要参考《Java Persistence with MyBatis 3》。
样例数据
本文以MySQL数据库为例,建立一个STUDENTS表,插入两条数据,然后进行单表的增删改查
CREATE TABLE STUDENTS
(
stud_id int(11) NOT NULL AUTO_INCREMENT,
- 【Hadoop十五】Hadoop Counter
bit1129
hadoop
1. 只有Map任务的Map Reduce Job
File System Counters
FILE: Number of bytes read=3629530
FILE: Number of bytes written=98312
FILE: Number of read operations=0
FILE: Number of lar
- 解决Tomcat数据连接池无法释放
ronin47
tomcat 连接池 优化
近段时间,公司的检测中心报表系统(SMC)的开发人员时不时找到我,说用户老是出现无法登录的情况。前些日子因为手头上 有Jboss集群的测试工作,发现用户不能登录时,都是在Tomcat中将这个项目Reload一下就好了,不过只是治标而已,因为大概几个小时之后又会 再次出现无法登录的情况。
今天上午,开发人员小毛又找到我,要我协助将这个问题根治一下,拖太久用户难保不投诉。
简单分析了一
- java-75-二叉树两结点的最低共同父结点
bylijinnan
java
import java.util.LinkedList;
import java.util.List;
import ljn.help.*;
public class BTreeLowestParentOfTwoNodes {
public static void main(String[] args) {
/*
* node data is stored in
- 行业垂直搜索引擎网页抓取项目
carlwu
LuceneNutchHeritrixSolr
公司有一个搜索引擎项目,希望各路高人有空来帮忙指导,谢谢!
这是详细需求:
(1) 通过提供的网站地址(大概100-200个网站),网页抓取程序能不断抓取网页和其它类型的文件(如Excel、PDF、Word、ppt及zip类型),并且程序能够根据事先提供的规则,过滤掉不相干的下载内容。
(2) 程序能够搜索这些抓取的内容,并能对这些抓取文件按照油田名进行分类,然后放到服务器不同的目录中。
- [通讯与服务]在总带宽资源没有大幅增加之前,不适宜大幅度降低资费
comsci
资源
降低通讯服务资费,就意味着有更多的用户进入,就意味着通讯服务提供商要接待和服务更多的用户,在总体运维成本没有由于技术升级而大幅下降的情况下,这种降低资费的行为将导致每个用户的平均带宽不断下降,而享受到的服务质量也在下降,这对用户和服务商都是不利的。。。。。。。。
&nbs
- Java时区转换及时间格式
Cwind
java
本文介绍Java API 中 Date, Calendar, TimeZone和DateFormat的使用,以及不同时区时间相互转化的方法和原理。
问题描述:
向处于不同时区的服务器发请求时需要考虑时区转换的问题。譬如,服务器位于东八区(北京时间,GMT+8:00),而身处东四区的用户想要查询当天的销售记录。则需把东四区的“今天”这个时间范围转换为服务器所在时区的时间范围。
- readonly,只读,不可用
dashuaifu
jsjspdisablereadOnlyreadOnly
readOnly 和 readonly 不同,在做js开发时一定要注意函数大小写和jsp黄线的警告!!!我就经历过这么一件事:
使用readOnly在某些浏览器或同一浏览器不同版本有的可以实现“只读”功能,有的就不行,而且函数readOnly有黄线警告!!!就这样被折磨了不短时间!!!(期间使用过disable函数,但是发现disable函数之后后台接收不到前台的的数据!!!)
- LABjs、RequireJS、SeaJS 介绍
dcj3sjt126com
jsWeb
LABjs 的核心是 LAB(Loading and Blocking):Loading 指异步并行加载,Blocking 是指同步等待执行。LABjs 通过优雅的语法(script 和 wait)实现了这两大特性,核心价值是性能优化。LABjs 是一个文件加载器。RequireJS 和 SeaJS 则是模块加载器,倡导的是一种模块化开发理念,核心价值是让 JavaScript 的模块化开发变得更
- [应用结构]入口脚本
dcj3sjt126com
PHPyii2
入口脚本
入口脚本是应用启动流程中的第一环,一个应用(不管是网页应用还是控制台应用)只有一个入口脚本。终端用户的请求通过入口脚本实例化应用并将将请求转发到应用。
Web 应用的入口脚本必须放在终端用户能够访问的目录下,通常命名为 index.php,也可以使用 Web 服务器能定位到的其他名称。
控制台应用的入口脚本一般在应用根目录下命名为 yii(后缀为.php),该文
- haoop shell命令
eksliang
hadoophadoop shell
cat
chgrp
chmod
chown
copyFromLocal
copyToLocal
cp
du
dus
expunge
get
getmerge
ls
lsr
mkdir
movefromLocal
mv
put
rm
rmr
setrep
stat
tail
test
text
- MultiStateView不同的状态下显示不同的界面
gundumw100
android
只要将指定的view放在该控件里面,可以该view在不同的状态下显示不同的界面,这对ListView很有用,比如加载界面,空白界面,错误界面。而且这些见面由你指定布局,非常灵活。
PS:ListView虽然可以设置一个EmptyView,但使用起来不方便,不灵活,有点累赘。
<com.kennyc.view.MultiStateView xmlns:android=&qu
- jQuery实现页面内锚点平滑跳转
ini
JavaScripthtmljqueryhtml5css
平时我们做导航滚动到内容都是通过锚点来做,刷的一下就直接跳到内容了,没有一丝的滚动效果,而且 url 链接最后会有“小尾巴”,就像#keleyi,今天我就介绍一款 jquery 做的滚动的特效,既可以设置滚动速度,又可以在 url 链接上没有“小尾巴”。
效果体验:http://keleyi.com/keleyi/phtml/jqtexiao/37.htmHTML文件代码:
&
- kafka offset迁移
kane_xie
kafka
在早前的kafka版本中(0.8.0),offset是被存储在zookeeper中的。
到当前版本(0.8.2)为止,kafka同时支持offset存储在zookeeper和offset manager(broker)中。
从官方的说明来看,未来offset的zookeeper存储将会被弃用。因此现有的基于kafka的项目如果今后计划保持更新的话,可以考虑在合适
- android > 搭建 cordova 环境
mft8899
android
1 , 安装 node.js
http://nodejs.org
node -v 查看版本
2, 安装 npm
可以先从 https://github.com/isaacs/npm/tags 下载 源码 解压到
- java封装的比较器,比较是否全相同,获取不同字段名字
qifeifei
非常实用的java比较器,贴上代码:
import java.util.HashSet;
import java.util.List;
import java.util.Set;
import net.sf.json.JSONArray;
import net.sf.json.JSONObject;
import net.sf.json.JsonConfig;
i
- 记录一些函数用法
.Aky.
位运算PHP数据库函数IP
高手们照旧忽略。
想弄个全天朝IP段数据库,找了个今天最新更新的国内所有运营商IP段,copy到文件,用文件函数,字符串函数把玩下。分割出startIp和endIp这样格式写入.txt文件,直接用phpmyadmin导入.csv文件的形式导入。(生命在于折腾,也许你们觉得我傻X,直接下载人家弄好的导入不就可以,做自己的菜鸟,让别人去说吧)
当然用到了ip2long()函数把字符串转为整型数
- sublime text 3 rust
wudixiaotie
Sublime Text
1.sublime text 3 => install package => Rust
2.cd ~/.config/sublime-text-3/Packages
3.mkdir rust
4.git clone https://github.com/sp0/rust-style
5.cd rust-style
6.cargo build --release
7.ctrl