- 基于社交网络算法优化的二维最大熵图像分割
智能算法研学社(Jack旭)
智能优化算法应用图像分割算法php开发语言
智能优化算法应用:基于社交网络优化的二维最大熵图像阈值分割-附代码文章目录智能优化算法应用:基于社交网络优化的二维最大熵图像阈值分割-附代码1.前言2.二维最大熵阈值分割原理3.基于社交网络优化的多阈值分割4.算法结果:5.参考文献:6.Matlab代码摘要:本文介绍基于最大熵的图像分割,并且应用社交网络算法进行阈值寻优。1.前言阅读此文章前,请阅读《图像分割:直方图区域划分及信息统计介绍》htt
- 神经网络-损失函数
红米煮粥
神经网络人工智能深度学习
文章目录一、回归问题的损失函数1.均方误差(MeanSquaredError,MSE)2.平均绝对误差(MeanAbsoluteError,MAE)二、分类问题的损失函数1.0-1损失函数(Zero-OneLossFunction)2.交叉熵损失(Cross-EntropyLoss)3.合页损失(HingeLoss)三、总结在神经网络中,损失函数(LossFunction)扮演着至关重要的角色,它
- 自信
净域
今天我打击了某人的自信我的自信回来了损有余而补不足不得不说我喜欢这个特殊的正能量不是会放大缩小而是类似熵平衡的那种奇怪的平衡
- 几率odds与逻辑回归
元气小地瓜
https://www.jianshu.com/p/aa73938f32ee几率odds从Odds角度理解LogisticRegression模型的参数13December20151.引言无论在学术界,还是在工业界,LogisticRegression(LR,逻辑回归)模型[1]是常用的分类模型,被用于各种分类场景和点击率预估问题等,它也是MaxEntropy(ME,最大熵)模型[2],或者说So
- 毕设项目 基于特征熵值分析的网站分类系统实现(源码+论文)
iuidfds
毕业设计毕设
文章目录0项目说明1研究目的2研究方法3研究结论4各模块介绍4.1爬虫模块功能与技术4.2网页处理模块功能与技术4.3特征提取与文本特征表示模块功能与技术4.4分类器模块功能与技术5项目源码6论文目录7最后0项目说明基于特征熵值分析的网站分类系统实现提示:适合用于课程设计或毕业设计,工作量达标,源码开放1研究目的本设计对KNN算法的缺陷产生原因进行详细地分析,并针对缺陷对算法进行了引入属性熵值等一
- 【机器学习】4 ——熵
qq_43507078
我的机器学习机器学习人工智能
机器学习4——熵文章目录机器学习4——熵前言前言熵衡量随机变量不确定性,由克劳德·香农(ClaudeShannon)在1948年提出,称为香农熵。反映了一个系统中信息的混乱程度或信息量。其定义为:H(P)=−∑xP(x)logP(x)H(P)=-\sum_{x}^{}P(x)logP(x)H(P)=−x∑P(x)logP(x)其中:X是一个随机变量,它有种可能的取值P(x)是X取值为x的概率。熵H
- 最大熵模型(Maximum entropy model)
Fang Suk
机器学习最大熵模型最大熵最大熵原理指数族分布
最大熵模型(Maximumentropymodel)本文你将知道:什么是最大熵原理,最大熵模型最大熵模型的推导(约束最优化问题求解)最大熵模型的含义与优缺点1最大熵原理最大熵原理:在满足已知约束条件的模型集合中,选择熵最大的模型。熵最大,对应着随机性最大。最大熵首先要满足已知事实,对于其他未知的情况,不做任何的假设,认为他们是等可能性的,此时随机性最大。2最大熵模型最大熵原理是统计学习的一般原理,
- 两种常用损失函数:nn.CrossEntropyLoss 与 nn.TripletMarginLoss
大多_C
人工智能算法python机器学习
两种用于模型训练的损失函数:nn.CrossEntropyLoss和nn.TripletMarginLoss。它们在对比学习和分类任务中各自扮演不同的角色。接下来是对这两种损失函数的详细介绍。1.nn.CrossEntropyLossnn.CrossEntropyLoss是PyTorch提供的交叉熵损失函数,通常用于多分类任务中。它结合了softmax激活函数和负对数似然损失(NegativeLo
- Focal Loss的简述与实现
友人Chi
人工智能机器学习深度学习
文章目录交叉熵损失函数样本不均衡问题FocalLossFocalLoss的代码实现交叉熵损失函数Loss=L(y,p^)=−ylog(p^)−(1−y)log(1−p^)Loss=L(y,\hat{p})=-ylog(\hat{p})-(1-y)log(1-\hat{p})Loss=L(y,p^)=−ylog(p^)−(1−y)log(1−p^)其中p^\hat{p}p^为预测概率大小。此处的交叉
- 数学建模-基于熵权法对Topsis模型的修正
啥都想学点的研究生
矩阵线性代数
topsis模型赋予权重有层次分析法,但层次分析法也有其弊端。层次分析法最大的缺点:判断矩阵的确定依赖于专家,如果专家的判断存在主观性的话,会对结果产生很大的影响。(主观性太强)针对层次分析法主观性太强的弊端,我们可以采用熵权法给topsis评价模型的各个指标赋权。如何度量信息量的大小,以小明和小王的例子为例:建立信息量I(x)和P(x)之间的关系:信息熵的定义:信息熵越大,信息量是越大还是越小呢
- 2021-07-23——第23课:每个人的生命中需要一名个人成长教练——学习打卡
a吃饭
有几年时间,我都是掉到自己的情绪和事件里面,一直没跳出来。每次鼓起信念去坚持,然后遇到点什么情绪,就被打败了。一段时间后又鼓起勇气去尝试,然后发生了点什么事,就又被打败了。就这样反反复复几年后,我加入了007,7天写一篇的节奏,不快,但是有时候我还是很艰难才坚持下来,但是一年多后,我发现我可以很轻松了。就像现在,我已经做到日更一百多天了。我才发现,我是受到了007里正向人的影响。以前闭门造车,熵不
- 如何利用python实现碰撞原理
加密社
福利资源区块链python开发语言
先看图跑了大概一天这是结果具体是通过BIP39规则生成的种子数据生成完词组后,再根据词组生成姨太地址#生成随机助记词defgenerate_mnemonic():entropy=os.urandom(16)#随机生成16字节熵mnemonic=[]foriinrange(12):#生成12个助记词word_index=int.from_bytes(entropy[i:i+1],'big')%len
- 《逆熵增成长之路》:如何让学到的知识更有价值?
米卡写作
今天继续阅读《逆熵增成长之路》第六章:输入-思考-思考篇,有以下3个感悟,分享给大家。1.什么样的知识值得学?2.如何提高学习效率?3.如何让知识变得更有价值?认真看完,你一定会有所收获。01.什么样的知识值得学?人们常说:你接触什么样的信息,决定你成为什么样的人。这就需要我们控制好自己的信息输入源,包括看什么书、关注什么样的公众号、视频号等。那什么是好的信息输入源呢?《逆熵增成长之路》上提到的4
- 决策树(decision tree)
a15957199647
机器学习数据
决策树就是像树结构一样的分类下去,最后来预测输入样本的属于那类标签。本文是本人的学习笔记,所以有些地方也不是很清楚。大概流程就是1.查看子类是否属于同一个类2.如果是,返回类标签,如果不是,找到最佳的分类子集的特征3.划分数据集4.创建分支节点5.对每一个节点重复上述步骤6.返回树首先我们要像一个办法,怎么来确定最佳的分类特征就是为什么要这么划分子集。一般有三种方法:1.Gini不纯度2.信息熵3
- 心熵,心流,以及复盘3R
热血青年John
今天学到了两个新词汇---心熵和心流。用自己的话来反馈一下。在化学反应体系里,熵值越大,反应越不稳定。大脑思维不集中的时候瞻前顾后,或者思维活跃的有些可怕一会儿思考宇宙尽头人类与黑洞的联系一会儿纠结待会儿吃啥,大脑处于一种混乱状态,意识里可能只有几个念头,但潜意识里可能有多得多的念头在相互碰撞,争夺者你的注意力和大脑的控制权,这时候你的大脑就像是一个热气膨胀的锅,里面的热烫的气体肆意翻腾,照顾之间
- 机器学习和深度学习中常见损失函数,包括损失函数的数学公式、推导及其在不同场景中的应用
早起星人
机器学习深度学习人工智能
目录引言什么是损失函数?常见损失函数介绍3.1均方误差(MeanSquaredError,MSE)3.2交叉熵损失(Cross-EntropyLoss)3.3平滑L1损失(SmoothL1Loss)3.4HingeLoss(合页损失)3.5二进制交叉熵损失(BinaryCross-EntropyLoss)3.6KL散度(KLDivergence)3.7Huber损失(HuberLoss)3.8对比
- BCEWithLogitsLoss
hero_hilog
算法pytorch
BCEWithLogitsLoss是PyTorch深度学习框架中的一个损失函数,用于二元分类问题。它结合了Sigmoid激活函数和二元交叉熵损失(BinaryCrossEntropyLoss),使得在训练过程中更加数值稳定。特点:数值稳定性:直接使用Sigmoid函数后跟BCE损失可能会遇到数值稳定性问题,特别是当输入值非常大或非常小的时候。BCEWithLogitsLoss通过内部使用Logi
- 数学基础 -- 梯度下降算法
sz66cm
算法人工智能数学基础
梯度下降算法梯度下降算法(GradientDescent)是一种优化算法,主要用于寻找函数的局部最小值或全局最小值。它广泛应用于机器学习、深度学习以及统计学中,用于最小化损失函数或误差函数。梯度下降的基本概念梯度下降算法通过以下步骤工作:初始化参数:随机初始化模型的参数(如权重和偏差),也可以用特定的策略初始化。计算损失:对当前模型输出和实际目标值计算损失(如均方误差、交叉熵等)。计算梯度:计算损
- 一屋不扫,何以扫天下
活着不易
“一屋不扫,何以扫天下”这篇作文在我初中的时候就写过,无非是人首先要修炼自己,自身本领强,方能打天下。人应该有自己的良好习惯、行为举止,包括处所洁净........如今看来当时我是懂了道理,却并不深刻。人到中年方知“使熵值减小”的人才能自食其力、有所成就、有所作为。只有不断对自己整合,才能不断进步和接近完美。而熵是什么?熵即混乱度,越混乱熵值就会越大。一个人总是乱糟糟的,毫无计划,东西乱放,衣服乱
- 2019给吴军老师的第一封信
启航_FLY
吴军老师好:所谓信息的相关性,可以从宏观和微观两个角度思考。从宏观的角度上讲就是要把信息放到系统中去思考。因为在系统中信息的形态是不断变化的,这一点对于使用信息,继而要认识、利用和改变系统的人是十分重要的,信息的形式虽然分散,但基于某种原因,却往往能在有意无意间汇聚成一条条或大或小的脉络,其核心正是老师提到的人类认知世界的本源。物质也好,能量也罢,在历史的演化中都逃不过一个目的性。因为信息负熵迫使
- 王晓芳在增长势能课上提到的这个定律,为什么让全宇宙都绝望?
晓芳聊职场
王晓芳在增长势能课上提到的这个定律,为什么让全宇宙都绝望?企业家最深的痛就是增长乏力---王晓芳授课老师|王晓芳壹创新商学创办人2019年壹创新商学课上,王晓芳教授分享了“熵增定律”,同时以华为为例,讲述了企业管理是如何通过“耗散结构”进行“反熵增”,从而活下去。熵增定律,也叫“热力学第二定律”。这是德国人克劳修斯提出的理论,最初用于揭示事物总是向无序的方向的发展、以及“孤立系统下热量从高温物体流
- 将自己产品化
飞叶灵
今天开始读《纳瓦尔宝典》,文章开篇的核心,人生应该让自己走思维体系和思维模式更新之路。在各个学科中建立自己的思维体系,高数中微积分的思维体系,大物中的熵的思维体系,《道德经》中天人合一,道法自然体系等等。像樊登老师最喜欢提及的认知ABC的看法模型一样,我们需要在各种知识、宗教、娱乐中学习提升自己看到每一件事情发生的产生的影响的看法B,通过看法B把那些不如意的事情看到背后的祝福……这不由让我想起了,
- 基于熵权法对Topsis模型的修正
钰见梵星
数学建模算法
基于熵权法对Topsis模型的修正有n个要评价的对象,m个评价指标的标准化矩阵,可以使用层次分析法给这m个评价指标确定权重∑j=1mωj=1\sum_{j=1}^m{\omega_j}=1j=1∑mωj=1层次分析法最大的缺点:判断矩阵的确定依赖于专家,如果专家的判断存在主观性的话,会对结果产生很大的影响。(主观性太强)熵权法是一种客观赋权方法依据的原理:指标的变异程度越小,所反映的信息量也越少,
- CEEMDAN(自适应噪声完备集合经验模态分解)+峭度值+能量熵+近似熵+模糊熵+排列熵+多尺度排列熵+样本熵
2301_78492934
人工智能算法深度学习信号处理matlab
CEEMDAN(自适应噪声完备集合经验模态分解)+峭度值+能量熵+近似熵+模糊熵+排列熵+多尺度排列熵+样本熵对序列信号进行CEEMDAN(自适应噪声完备集合经验模态)分解后计算各分解分量峭度值、能量熵、近似熵、模糊熵、排列熵、多尺度排列熵、样本熵,程序实用性高,适合故障诊断、功率预测等研究方向信号处理。并输出分解图、包络图、包络谱图、峭度值图、频谱图。下面对所涉及算法及运行效果进行介绍好的,下面
- SGMD(辛几何分解)+峭度值+能量熵+近似熵+模糊熵+排列熵+多尺度排列熵+样本熵
2301_78492934
人工智能matlab信号处理
对序列信号进行SGMD(辛几何分解)分解后计算各分解分量峭度值、能量熵、近似熵、模糊熵、排列熵、多尺度排列熵、样本熵,程序实用性高,适合故障诊断、功率预测等研究方向信号处理。可输出分解图、包络图、包络谱图、峭度值图、频谱图。从Excel表格中读取,直接替换数据就可以使用,matlab代码SGMD(辛几何模态分解)辛几何模态分解(SGMD)是一种基于辛几何理论的信号分解方法。辛几何是一种数学框架,用
- 蓝桥杯刷题--python-9(2023填空题2)
芝士小熊饼干
l蓝桥杯刷题python蓝桥杯python
001串的熵-蓝桥云课(lanqiao.cn)importmathn=23333333foriinrange(1,n>>1):j=n-ia=-(i/n)*(math.log2(i/n))*i-(j/n)*(math.log2(j/n))*ja=round(a,4)ifa==11625907.5798:print(i)break0求和-蓝桥云课(lanqiao.cn)n=20230408print(
- 4D习书-第十四章 人们需要被包融的感觉
明心悦己
本章主要讲述了人们为什么需要包融和包融的好处。A.我的关注点马斯洛的需求层次理论说明人们在感到被感激和包融之前,不可能向更高层的任务(解决问题或者进行创造)迈进。最好的说服是用上耳朵,因为人们需要被聆听的感觉。M.情绪和内心独白的确是这样的,如果人们没有感觉到舒服,就会有精神熵,会限制他们的创造性。B.让自己更好的行动耐心听老公说话,除了向他表示感激,更多去倾听、包融他的行为,让他在家里感觉到舒服
- 追求规则生活的自由——今天开始第一天日更
谷气质
已经体验不规则生活体验了好久,不规则的生活让我觉得自由,那是之前,经历过一段时间大概是辛苦的工作以后吧,现在几乎已经忘了那时的忙碌。现在更加体会到其实那样规则的生活不一定代表不自由,这样混乱不规则的生活也不一定就是自由,射手座的人对自由要求比较多。规则的生活至少让我不用去想那么多。只是按部就班的做事就好,当打乱之前生活的节奏,每天不知道该干什么的时候,反而会大脑和心都处于增熵过程中,需要耗费精力。
- 蓝桥杯:01串的熵讲解(C++)
DaveVV
蓝桥杯c++蓝桥杯c++c语言算法数据结构
01串的熵本题来自于:2023年十四届省赛大学B组真题(共10道题)主要考察:暴力。代码放在下面,代码中重要的细节全都写了注释,非常清晰明了:#includeusingnamespacestd;intmain(){//请在此输入您的代码intn=23333333;//01串的长度doubletarget=11625907.5798;//信息熵的目标值for(inti=0;i(i)/n;//强转,让
- 【BIOS】解锁BIOS隐藏菜单/高级选项
啵啵啵啵哲
BIOS搞机windows
免责声明:修改BIOS存在风险,请谨慎操作。作者不对因操作不当而导致的任何后果负责。一些默认的BIOS菜单选项相当有限,无法进行一些高级选项的修改。通过修改BIOS内容,我们可以解锁被隐藏的高级菜单,如Above4GDecoding、ResizableBar等。本教程将介绍如何解锁这些隐藏菜单。本教程与工具参考/来源:(1)B站视频:熵阳之昕:人人都能解锁BIOS隐藏选项最新最简单(AMIBIOS
- 戴尔笔记本win8系统改装win7系统
sophia天雪
win7戴尔改装系统win8
戴尔win8 系统改装win7 系统详述
第一步:使用U盘制作虚拟光驱:
1)下载安装UltraISO:注册码可以在网上搜索。
2)启动UltraISO,点击“文件”—》“打开”按钮,打开已经准备好的ISO镜像文
- BeanUtils.copyProperties使用笔记
bylijinnan
java
BeanUtils.copyProperties VS PropertyUtils.copyProperties
两者最大的区别是:
BeanUtils.copyProperties会进行类型转换,而PropertyUtils.copyProperties不会。
既然进行了类型转换,那BeanUtils.copyProperties的速度比不上PropertyUtils.copyProp
- MyEclipse中文乱码问题
0624chenhong
MyEclipse
一、设置新建常见文件的默认编码格式,也就是文件保存的格式。
在不对MyEclipse进行设置的时候,默认保存文件的编码,一般跟简体中文操作系统(如windows2000,windowsXP)的编码一致,即GBK。
在简体中文系统下,ANSI 编码代表 GBK编码;在日文操作系统下,ANSI 编码代表 JIS 编码。
Window-->Preferences-->General -
- 发送邮件
不懂事的小屁孩
send email
import org.apache.commons.mail.EmailAttachment;
import org.apache.commons.mail.EmailException;
import org.apache.commons.mail.HtmlEmail;
import org.apache.commons.mail.MultiPartEmail;
- 动画合集
换个号韩国红果果
htmlcss
动画 指一种样式变为另一种样式 keyframes应当始终定义0 100 过程
1 transition 制作鼠标滑过图片时的放大效果
css
.wrap{
width: 340px;height: 340px;
position: absolute;
top: 30%;
left: 20%;
overflow: hidden;
bor
- 网络最常见的攻击方式竟然是SQL注入
蓝儿唯美
sql注入
NTT研究表明,尽管SQL注入(SQLi)型攻击记录详尽且为人熟知,但目前网络应用程序仍然是SQLi攻击的重灾区。
信息安全和风险管理公司NTTCom Security发布的《2015全球智能威胁风险报告》表明,目前黑客攻击网络应用程序方式中最流行的,要数SQLi攻击。报告对去年发生的60亿攻击 行为进行分析,指出SQLi攻击是最常见的网络应用程序攻击方式。全球网络应用程序攻击中,SQLi攻击占
- java笔记2
a-john
java
类的封装:
1,java中,对象就是一个封装体。封装是把对象的属性和服务结合成一个独立的的单位。并尽可能隐藏对象的内部细节(尤其是私有数据)
2,目的:使对象以外的部分不能随意存取对象的内部数据(如属性),从而使软件错误能够局部化,减少差错和排错的难度。
3,简单来说,“隐藏属性、方法或实现细节的过程”称为——封装。
4,封装的特性:
4.1设置
- [Andengine]Error:can't creat bitmap form path “gfx/xxx.xxx”
aijuans
学习Android遇到的错误
最开始遇到这个错误是很早以前了,以前也没注意,只当是一个不理解的bug,因为所有的texture,textureregion都没有问题,但是就是提示错误。
昨天和美工要图片,本来是要背景透明的png格式,可是她却给了我一个jpg的。说明了之后她说没法改,因为没有png这个保存选项。
我就看了一下,和她要了psd的文件,还好我有一点
- 自己写的一个繁体到简体的转换程序
asialee
java转换繁体filter简体
今天调研一个任务,基于java的filter实现繁体到简体的转换,于是写了一个demo,给各位博友奉上,欢迎批评指正。
实现的思路是重载request的调取参数的几个方法,然后做下转换。
- android意图和意图监听器技术
百合不是茶
android显示意图隐式意图意图监听器
Intent是在activity之间传递数据;Intent的传递分为显示传递和隐式传递
显式意图:调用Intent.setComponent() 或 Intent.setClassName() 或 Intent.setClass()方法明确指定了组件名的Intent为显式意图,显式意图明确指定了Intent应该传递给哪个组件。
隐式意图;不指明调用的名称,根据设
- spring3中新增的@value注解
bijian1013
javaspring@Value
在spring 3.0中,可以通过使用@value,对一些如xxx.properties文件中的文件,进行键值对的注入,例子如下:
1.首先在applicationContext.xml中加入:
<beans xmlns="http://www.springframework.
- Jboss启用CXF日志
sunjing
logjbossCXF
1. 在standalone.xml配置文件中添加system-properties:
<system-properties> <property name="org.apache.cxf.logging.enabled" value=&
- 【Hadoop三】Centos7_x86_64部署Hadoop集群之编译Hadoop源代码
bit1129
centos
编译必需的软件
Firebugs3.0.0
Maven3.2.3
Ant
JDK1.7.0_67
protobuf-2.5.0
Hadoop 2.5.2源码包
Firebugs3.0.0
http://sourceforge.jp/projects/sfnet_findbug
- struts2验证框架的使用和扩展
白糖_
框架xmlbeanstruts正则表达式
struts2能够对前台提交的表单数据进行输入有效性校验,通常有两种方式:
1、在Action类中通过validatexx方法验证,这种方式很简单,在此不再赘述;
2、通过编写xx-validation.xml文件执行表单验证,当用户提交表单请求后,struts会优先执行xml文件,如果校验不通过是不会让请求访问指定action的。
本文介绍一下struts2通过xml文件进行校验的方法并说
- 记录-感悟
braveCS
感悟
再翻翻以前写的感悟,有时会发现自己很幼稚,也会让自己找回初心。
2015-1-11 1. 能在工作之余学习感兴趣的东西已经很幸福了;
2. 要改变自己,不能这样一直在原来区域,要突破安全区舒适区,才能提高自己,往好的方面发展;
3. 多反省多思考;要会用工具,而不是变成工具的奴隶;
4. 一天内集中一个定长时间段看最新资讯和偏流式博
- 编程之美-数组中最长递增子序列
bylijinnan
编程之美
import java.util.Arrays;
import java.util.Random;
public class LongestAccendingSubSequence {
/**
* 编程之美 数组中最长递增子序列
* 书上的解法容易理解
* 另一方法书上没有提到的是,可以将数组排序(由小到大)得到新的数组,
* 然后求排序后的数组与原数
- 读书笔记5
chengxuyuancsdn
重复提交struts2的token验证
1、重复提交
2、struts2的token验证
3、用response返回xml时的注意
1、重复提交
(1)应用场景
(1-1)点击提交按钮两次。
(1-2)使用浏览器后退按钮重复之前的操作,导致重复提交表单。
(1-3)刷新页面
(1-4)使用浏览器历史记录重复提交表单。
(1-5)浏览器重复的 HTTP 请求。
(2)解决方法
(2-1)禁掉提交按钮
(2-2)
- [时空与探索]全球联合进行第二次费城实验的可能性
comsci
二次世界大战前后,由爱因斯坦参加的一次在海军舰艇上进行的物理学实验 -费城实验
至今给我们大家留下很多迷团.....
关于费城实验的详细过程,大家可以在网络上搜索一下,我这里就不详细描述了
在这里,我的意思是,现在
- easy connect 之 ORA-12154: TNS: 无法解析指定的连接标识符
daizj
oracleORA-12154
用easy connect连接出现“tns无法解析指定的连接标示符”的错误,如下:
C:\Users\Administrator>sqlplus username/
[email protected]:1521/orcl
SQL*Plus: Release 10.2.0.1.0 – Production on 星期一 5月 21 18:16:20 2012
Copyright (c) 198
- 简单排序:归并排序
dieslrae
归并排序
public void mergeSort(int[] array){
int temp = array.length/2;
if(temp == 0){
return;
}
int[] a = new int[temp];
int
- C语言中字符串的\0和空格
dcj3sjt126com
c
\0 为字符串结束符,比如说:
abcd (空格)cdefg;
存入数组时,空格作为一个字符占有一个字节的空间,我们
- 解决Composer国内速度慢的办法
dcj3sjt126com
Composer
用法:
有两种方式启用本镜像服务:
1 将以下配置信息添加到 Composer 的配置文件 config.json 中(系统全局配置)。见“例1”
2 将以下配置信息添加到你的项目的 composer.json 文件中(针对单个项目配置)。见“例2”
为了避免安装包的时候都要执行两次查询,切记要添加禁用 packagist 的设置,如下 1 2 3 4 5
- 高效可伸缩的结果缓存
shuizhaosi888
高效可伸缩的结果缓存
/**
* 要执行的算法,返回结果v
*/
public interface Computable<A, V> {
public V comput(final A arg);
}
/**
* 用于缓存数据
*/
public class Memoizer<A, V> implements Computable<A,
- 三点定位的算法
haoningabc
c算法
三点定位,
已知a,b,c三个顶点的x,y坐标
和三个点都z坐标的距离,la,lb,lc
求z点的坐标
原理就是围绕a,b,c 三个点画圆,三个圆焦点的部分就是所求
但是,由于三个点的距离可能不准,不一定会有结果,
所以是三个圆环的焦点,环的宽度开始为0,没有取到则加1
运行
gcc -lm test.c
test.c代码如下
#include "stdi
- epoll使用详解
jimmee
clinux服务端编程epoll
epoll - I/O event notification facility在linux的网络编程中,很长的时间都在使用select来做事件触发。在linux新的内核中,有了一种替换它的机制,就是epoll。相比于select,epoll最大的好处在于它不会随着监听fd数目的增长而降低效率。因为在内核中的select实现中,它是采用轮询来处理的,轮询的fd数目越多,自然耗时越多。并且,在linu
- Hibernate对Enum的映射的基本使用方法
linzx0212
enumHibernate
枚举
/**
* 性别枚举
*/
public enum Gender {
MALE(0), FEMALE(1), OTHER(2);
private Gender(int i) {
this.i = i;
}
private int i;
public int getI
- 第10章 高级事件(下)
onestopweb
事件
index.html
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/
- 孙子兵法
roadrunners
孙子兵法
始计第一
孙子曰:
兵者,国之大事,死生之地,存亡之道,不可不察也。
故经之以五事,校之以计,而索其情:一曰道,二曰天,三曰地,四曰将,五
曰法。道者,令民于上同意,可与之死,可与之生,而不危也;天者,阴阳、寒暑
、时制也;地者,远近、险易、广狭、死生也;将者,智、信、仁、勇、严也;法
者,曲制、官道、主用也。凡此五者,将莫不闻,知之者胜,不知之者不胜。故校
之以计,而索其情,曰
- MySQL双向复制
tomcat_oracle
mysql
本文包括:
主机配置
从机配置
建立主-从复制
建立双向复制
背景
按照以下简单的步骤:
参考一下:
在机器A配置主机(192.168.1.30)
在机器B配置从机(192.168.1.29)
我们可以使用下面的步骤来实现这一点
步骤1:机器A设置主机
在主机中打开配置文件 ,
- zoj 3822 Domination(dp)
阿尔萨斯
Mina
题目链接:zoj 3822 Domination
题目大意:给定一个N∗M的棋盘,每次任选一个位置放置一枚棋子,直到每行每列上都至少有一枚棋子,问放置棋子个数的期望。
解题思路:大白书上概率那一张有一道类似的题目,但是因为时间比较久了,还是稍微想了一下。dp[i][j][k]表示i行j列上均有至少一枚棋子,并且消耗k步的概率(k≤i∗j),因为放置在i+1~n上等价与放在i+1行上,同理