Codeforces 375

A

  7的所有的余数都可以用1,6,8,9排列得到,然后搞一下就可以了。

B

  可以用类似于单调队列的东西搞。具体看代码:

/* 

 * Problem: B. Maximum Submatrix 2

 * Author: Shun Yao

 * Note: 题目要求交换行,我写的交换列。于是把矩阵转换一下就可以。

 */



#include <string.h>

#include <stdlib.h>

#include <limits.h>

#include <assert.h>

#include <stdio.h>

#include <ctype.h>

#include <math.h>

#include <time.h>



#include <map>

#include <set>

#include <list>

#include <stack>

#include <queue>

#include <deque>

#include <string>

#include <vector>

#include <bitset>

#include <utility>

#include <iomanip>

#include <numeric>

#include <sstream>

#include <iostream>

#include <algorithm>

#include <functional>



//using namespace std;



const int MAXN = 5010, MAXM = 5010;



int n, m, a[MAXN][MAXM], f[MAXN][MAXM];

char s[MAXN][MAXM];



int main(/*int argc, char **argv*/) {

	int i, j, k, l, ans;

	

//	freopen("B.in", "r", stdin);

//	freopen("B.out", "w", stdout);

	

	scanf("%d%d", &n, &m);

	for (i = 1; i <= n; ++i)

		scanf(" %s", s[i] + 1);

	ans = 0;

	for (i = 1; i <= n; ++i) {

		a[0][i] = i;

		f[0][i] = 0;

	}

	for (i = 1; i <= m; ++i) {

		l = 0;

		for (j = 1; j <= n; ++j) {

			k = a[i - 1][j];

			if (s[k][i] == '1') {

				f[i][k] = f[i - 1][k] + 1;

				a[i][++l] = k;

				ans = std::max(ans, f[i][k] * l);

			} else

				f[i][k] = 0;

		}

		for (j = 1; j <= n; ++j)

			if (f[i][j] == 0)

				a[i][++l] = j;

	}

	printf("%d", ans);

	

	fclose(stdin);

	fclose(stdout);

	return 0;

}

 C

  题目中实际上有提示,用dp[i][j][k]表示在(i, j),过所有object的射线的奇偶性为k的最小步数。

/* 

 * Problem: C. Circling Round Treasures

 * Author: Shun Yao

 */



#include <string.h>

#include <stdlib.h>

#include <limits.h>

#include <assert.h>

#include <stdio.h>

#include <ctype.h>

#include <math.h>

#include <time.h>



#include <map>

#include <set>

#include <list>

#include <stack>

#include <queue>

#include <deque>

#include <string>

#include <vector>

#include <bitset>

#include <utility>

#include <iomanip>

#include <numeric>

#include <sstream>

#include <iostream>

#include <algorithm>

#include <functional>



//using namespace std;



const int MAXN = 22, MAXM = 22, dx[4] = {0, 0, 1, -1}, dy[4] = {1, -1, 0, 0};



int n, m, a[MAXN][MAXM], sum[333], f[MAXN][MAXM][333];

char s[MAXN][MAXM];



class Data {

public:

	int x, y, k;

	Data(int X, int Y, int K) : x(X), y(Y), k(K) {}

} ;



std::queue<Data> q;



int main(/*int argc, char **argv*/) {

	int bomb, object, tl, i, j, k, x, y, trea[10], treasure[10], sx, sy, xx, yy, kk, ans;

	

	scanf("%d%d", &n, &m);

	for (i = 1; i <= n; ++i)

		scanf(" %s", s[i] + 1);

	bomb = 0;

	object = 0;

	tl = 0;

	for (i = 1; i <= n; ++i)

		for (j = 1; j <= m; ++j) {

			switch (s[i][j]) {

			case 'B':

				++object;

				bomb += 1 << (object - 1);

				for (k = 1; k <= i; ++k)

					a[k][j] += 1 << (object - 1);

				break;

			case 'S':

				s[i][j] = '.';

				sx = i;

				sy = j;

				break;

			case '.':

				break;

			case '#':

				break;

			default:

				++tl;

				++object;

				trea[s[i][j] - '0'] = 1 << (object - 1);

				for (k = 1; k <= i; ++k)

					a[k][j] += 1 << (object - 1);

			}

		}

	for (i = 1; i <= tl; ++i)

		scanf("%d", &treasure[i]);

	for (i = 0; i < 1 << object; ++i)

		if ((i & bomb) == 0)

			for (j = 1; j <= tl; ++j)

				if (i & trea[j])

					sum[i] += treasure[j];

	//bfs-----------------------------------------------------------------------

	memset(f, -1, sizeof f);

	f[sx][sy][0] = 0;

	q.push(Data(sx, sy, 0));

	ans = 0;

	while (!q.empty()) {

		x = q.front().x;

		y = q.front().y;

		k = q.front().k;

		q.pop();

		if (x == sx && y == sy)

			ans = std::max(ans, sum[k] - f[x][y][k]);

		for (i = 0; i < 4; ++i) {

			xx = x + dx[i];

			yy = y + dy[i];

			if (xx < 1 || xx > n || yy < 1 || yy > m || s[xx][yy] != '.')

				continue;

			kk = k;

			if (i == 0)

				kk ^= a[xx][yy];

			if (i == 1)

				kk ^= a[x][y];

			if (f[xx][yy][kk] == -1) {

				f[xx][yy][kk] = f[x][y][k] + 1;

				q.push(Data(xx, yy, kk));

			}

		}

	}

	printf("%d", ans);

	

	fclose(stdin);

	fclose(stdout);

	return 0;

}

D

  启发式合并平衡树 或者 莫队算法(其实dfs后分块做也可以)。

E

  官方给的是线性规划。dp也可以过。

你可能感兴趣的:(codeforces)