依照《SLAM开发之双目标定(MATLAB)》标定了一波,标定结果给出如下
左相机内参 (使用前需要对齐进行转置)
stereoParams.CameraParameters1.IntrinsicMatrix
[3.794933296903811e+02,0,0;0,3.789423824318373e+02,0;1.708814624155970e+02,1.115666514433592e+02,1]
左相机径向畸变(K1, K2, K3)
stereoParams.CameraParameters1.RadialDistortion
[0.030551047027847,0.649726442995634,-3.135805398892529]
左相机切向畸变(P1, P2)
stereoParams.CameraParameters1.TangentialDistortion
[0.002296124889110,0.001247128894521]
右相机内参 (使用前需要对齐进行转置)
stereoParams.CameraParameters2.IntrinsicMatrix
[3.812723804323131e+02,0,0;0,3.807879935881336e+02,0;1.726763231981177e+02,1.228890378500635e+02,1]
右相机径向畸变(K1, K2, K3)
stereoParams.CameraParameters2.RadialDistortion
[0.051714797025223,0.301689634726206,-1.949431177752929]
右相机切向畸变(P1, P2)
stereoParams.CameraParameters2.TangentialDistortion
[0.002019080886440,-0.002338594348609]
两个摄像头的旋转参数 (使用前需要对齐进行转置)
stereoParams.RotationOfCamera2
[0.999964138274955,-2.631593168759495e-04,-0.008464804262361;3.707800649684831e-04,0.999919094244024,0.012714853060666;0.008460773378928,-0.012717535664776,0.999883332994628]
两个摄像头的平移参数
stereoParams.TranslationOfCamera2
[-59.825188219129230,-0.439775295864600,0.962473834066763]
基于MATLAB工具箱校正得到各项参数后,将其移植到基于OpenCV的C++工程中,主要使用了以下三个函数
cv::stereoRectify(...)
cv::initUndistortRectifyMap(...)
cv::remap(...)
给出节点的完整代码如下:
#include
#include
#include
#include
#include "mono_camera.h"
#include "mono_frame.h"
#include "map_point.h"
#include "map.h"
#include "config.h"
#include "visual_odometry.h"
#include
#include
int main(int argc,char **argv)
{
ROS_INFO("hello ROOTSLAM");
ros::init(argc,argv,"starter_node");
ros::NodeHandle nh;
ros::console::set_logger_level(ROSCONSOLE_DEFAULT_NAME, ros::console::levels::Debug);
int freq;
nh.getParam("/Mi8Cam/frequency",freq);
ROS_INFO("FREQ:%d\n",freq);
// 参数设定
// M1:左相机内参矩阵
// M2:右相机内参矩阵
// D1:左相机畸变参数(k1 k2 p1 p2 k3)
// D2:右相机畸变参数(k1 k2 p1 p2 k3)
// R:右相机相对于左相机的旋转矩阵
// T:右相机相对于左相机的平移向量
cv::Size image_size(320,240);
cv::Mat M1 = (cv::Mat_(3, 3) << 3.794933296903811e+02, 0, 1.708814624155970e+02, 0, 3.789423824318373e+02, 1.115666514433592e+02, 0, 0, 1);
cv::Mat D1 = (cv::Mat_(5, 1) << 0.030551047027847, 0.649726442995634, 0.002296124889110, 0.001247128894521, -3.135805398892529);
cv::Mat M2 = (cv::Mat_(3, 3) << 3.812723804323131e+02, 0, 1.726763231981177e+02, 0, 3.807879935881336e+02, 1.228890378500635e+02, 0, 0, 1);
cv::Mat D2 = (cv::Mat_(5, 1) << 0.051714797025223, 0.301689634726206, 0.002019080886440, -0.002338594348609, -1.949431177752929);
cv::Mat R = (cv::Mat_(3, 3) << 0.999964138274955, 3.707800649684831e-04, 0.008460773378928, -2.631593168759495e-04, 0.999919094244024, -0.012717535664776, -0.008464804262361, 0.012714853060666, 0.999883332994628);
cv::Mat T = (cv::Mat_(3, 1) << -59.825188219129230, -0.439775295864600, 0.962473834066763);
// 左相机参数设定
cv::VideoCapture cap_left;
cap_left.open(0);
cap_left.set(cv::CAP_PROP_FRAME_WIDTH,320);
cap_left.set(cv::CAP_PROP_FRAME_HEIGHT,240);
cv::Mat frame_left;
cv::Mat frame_left_rec;
cv::Mat intrinsic_matrix_left = M1;
cv::Mat dist_coeffs_left = D1;
// 右相机参数设定
cv::VideoCapture cap_right;
cap_right.open(1);
cap_right.set(cv::CAP_PROP_FRAME_WIDTH,320);
cap_right.set(cv::CAP_PROP_FRAME_HEIGHT,240);
cv::Mat frame_right;
cv::Mat frame_right_rec;
cv::Mat intrinsic_matrix_right = M2;
cv::Mat dist_coeffs_right = D2;
// 双目相机立体校正参数计算
cv::Mat stereo_rotation_cam_right = R;
cv::Mat stereo_translation_cam_right = T;
cv::Mat _R1, _R2, _P1, _P2, _Q, _map11, _map12, _map21, _map22;
cv::Rect validRoiL, validRoiR; //左右相机立体修正后有效像素的区域
cv::stereoRectify(intrinsic_matrix_left, dist_coeffs_left, intrinsic_matrix_right, dist_coeffs_right, image_size, stereo_rotation_cam_right, -stereo_rotation_cam_right*stereo_translation_cam_right,\
_R1, _R2, _P1, _P2, _Q, cv::CALIB_ZERO_DISPARITY, -1, image_size, &validRoiL, &validRoiR);
cv::initUndistortRectifyMap(intrinsic_matrix_left, dist_coeffs_left, _R1, _P1, image_size, CV_16SC2, _map11, _map12);
cv::initUndistortRectifyMap(intrinsic_matrix_right, dist_coeffs_right, _R2, _P2, image_size, CV_16SC2, _map21, _map22);
ros::Rate loop_rate(30);
while(ros::ok())
{
static int cam_left_update = 0;
static int cam_right_update = 0;
// 更新左相机图像
if( cap_left.read(frame_left))
{
cam_left_update = 1;
}
// 更新右相机图像
if( cap_right.read(frame_right))
{
cam_right_update = 1;
}
// 只有当两个相机都更新时,才执行修正操作
if((cam_left_update==1) && (cam_right_update==1))
{
cam_left_update = 0; cam_right_update = 0;
// 左右相机修正
cv::remap(frame_left, frame_left_rec, _map11, _map12, cv::INTER_LINEAR);
rectangle(frame_left_rec, validRoiL, cv::Scalar(0, 0, 255));
cv::remap(frame_right, frame_right_rec, _map21, _map22, cv::INTER_LINEAR);
rectangle(frame_right_rec, validRoiR, cv::Scalar(0, 0, 255));
// 修正后的左右相机图像
cv::Mat rec_img_pair;
hconcat(frame_left_rec, frame_right_rec, rec_img_pair);
for (int j = 0; j < image_size.height; j += 16)
{
cv::line(rec_img_pair, cv::Point(0, j), cv::Point(image_size.width * 2, j), cv::Scalar(0, 255, 0));
}
// 原始的左右相机图像
cv::Mat raw_img_pair;
hconcat(frame_left,frame_right,raw_img_pair);
for (int j = 0; j < image_size.height; j += 16)
{
cv::line(raw_img_pair, cv::Point(0, j), cv::Point(image_size.width * 2, j), cv::Scalar(0, 255, 0));
}
//
cv::imshow("RectifiedPair",rec_img_pair);
cv::imshow("RawImagePair",raw_img_pair);
}
else
{
cam_left_update = 0; cam_right_update = 0;
}
cv::waitKey(1);
loop_rate.sleep();
}
return 0;
}