pku 2284 That Nice Euler Circuit

题意:

给你n个点第n个点保证与第0个点相交,然后求这n个点组成的图形可以把整个平面分成几个面

思路:

这里的解题关键是知道关于多面体的欧拉定理 

多面体:

设v为顶点数,e为棱数,f是面数,则
v-e+f=2-2p
p为欧拉示性数,例如
p=0 的多面体叫第零类多面体
p=1 的多面体叫第一类多面体

 

这里满足的是零类多面体,我们只要求出该图形的 点v,边e即可。 怎么求点v呢? 两部分一部分是原来的n-1个顶点,然后是交出来的,我们只要判断线段相交求直线交点即可,然偶可能会摇头重复的交点去掉,求边的话我们只要求出一个规范相交的点肯定会增加一条边,枚举点然后判断 点是否在线段上(除了端点),然偶求解即可。

#include <iostream>

#include <cstdio>

#include <cmath>

#include <vector>

#include <cstring>

#include <algorithm>

#include <string>

#include <set>

#include <functional>

#include <numeric>

#include <sstream>

#include <stack>

#include <map>

#include <queue>



#define CL(arr, val) memset(arr, val, sizeof(arr))



#define lc l,m,rt<<1

#define rc m + 1,r,rt<<1|1

#define pi acos(-1.0)

#define L(x)    (x) << 1

#define R(x)    (x) << 1 | 1

#define MID(l, r)   (l + r) >> 1

#define Min(x, y)   (x) < (y) ? (x) : (y)

#define Max(x, y)   (x) < (y) ? (y) : (x)

#define E(x)        (1 << (x))

#define iabs(x)     (x) < 0 ? -(x) : (x)

#define OUT(x)  printf("%I64d\n", x)

#define lowbit(x)   (x)&(-x)

#define Read()  freopen("din.txt", "r", stdin)

#define Write() freopen("d.out", "w", stdout)

#define ll unsigned long long

#define keyTree (chd[chd[root][1]][0])



#define M 100007

#define N 317



using namespace std;



const int inf = 0x7f7f7f7f;

const int mod = 1000000007;



struct Point

{

    double x,y;

    Point(double tx = 0,double ty = 0) : x(tx),y(ty){}

};

typedef Point Vtor;



Vtor operator + (Vtor A,Vtor B) { return Vtor(A.x + B.x,A.y + B.y); }

Vtor operator - (Point A,Point B) { return Vtor(A.x - B.x,A.y - B.y); }

Vtor operator * (Vtor A,double p) { return Vtor(A.x*p,A.y*p); }

Vtor operator / (Vtor A,double p) { return Vtor(A.x/p,A.y/p); }

const double eps = 1e-8;

int dcmp(double x) { if (fabs(x) < eps) return 0; else return x > 0? 1 : -1; }

bool operator < (Point A,Point B) { return A.x < B.x || (A.x == B.x && A.y < B.y); }

bool operator == (Point A,Point B) { return dcmp(A.x - B.x) == 0 && dcmp(A.y - B.y) == 0 ; }



double Dot(Vtor A,Vtor B) { return A.x*B.x + A.y*B.y; }

double Length(Vtor A) { return sqrt(Dot(A,A)); }

double Angle(Vtor A,Vtor B) { return acos(Dot(A,B)/Length(A)/Length(B)); }

double Cross(Vtor A,Vtor B) { return A.x*B.y - A.y*B.x; }

double Area2(Point A,Point B,Point C) { return Cross(B - A,C - A); }

Vtor Rotate(Vtor A,double rad) { return Vtor(A.x*cos(rad) - A.y*sin(rad),A.x*sin(rad) + A.y*cos(rad)); }

/*>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>*/



bool SegmentPI(Point a1,Point a2,Point b1,Point b2)

{

    double c1 = Cross(a2 - a1,b1 - a1), c2 = Cross(a2 - a1, b2 - a1),

           c3 = Cross(b2 - b1,a1 - b1), c4 = Cross(b2 - b1, a2 - b1);

    return dcmp(c1*c2) < 0 && dcmp(c3*c4) < 0;



}

bool OnSegment(Point p,Point a1,Point a2)

{

    return dcmp(Cross(a2 - p, a1 - p)) == 0 && dcmp(Dot(a2 - p,a1 - p)) < 0;

}

Point GetLineIn(Point P,Vtor v,Point Q,Vtor w)

{

    Vtor u = P - Q;

    double t = Cross(w,u)/Cross(v,w);

    return P + v*t;

}

Point P[N],v[N*N];

int n;



int main()

{



    Read();

    int Ei,Vi;

    int cas = 1;

    while (~scanf("%d",&n))

    {

        if (!n) break;

        Vi = 0;

        for (int i = 0; i < n; ++i)

        scanf("%lf%lf",&P[i].x,&P[i].y),v[Vi++] = P[i];



        Ei = --n;

        for (int i = 0; i < n; ++i)

        {

            for (int j = i + 1; j < n; ++j)

            {

                if (SegmentPI(P[i],P[i + 1],P[j],P[j + 1]))

                {

                    v[Vi++] = GetLineIn(P[i],P[i + 1] - P[i],P[j],P[j + 1] - P[j]);

                }

            }

        }

        sort(v, v + Vi);

        Vi = unique(v,v + Vi) - v;

        for (int i = 0; i < Vi; ++i)

        {

            for (int j = 0; j < n; ++j)

            {

                if (OnSegment(v[i],P[j],P[j + 1])) Ei++;

            }

        }

//        printf("%d %d\n",Vi,Ei);

        printf("Case %d: There are %d pieces.\n",cas++,Ei - Vi + 2);

    }



    return 0;

}
View Code

 

 

你可能感兴趣的:(Euler)