In the 2020 grid below, four numbers along a diagonal line have been marked in red.
08 02 22 97 38 15 00 40 00 75 04 05 07 78 52 12 50 77 91 08
49 49 99 40 17 81 18 57 60 87 17 40 98 43 69 48 04 56 62 00
81 49 31 73 55 79 14 29 93 71 40 67 53 88 30 03 49 13 36 65
52 70 95 23 04 60 11 42 69 24 68 56 01 32 56 71 37 02 36 91
22 31 16 71 51 67 63 89 41 92 36 54 22 40 40 28 66 33 13 80
24 47 32 60 99 03 45 02 44 75 33 53 78 36 84 20 35 17 12 50
32 98 81 28 64 23 67 10 26 38 40 67 59 54 70 66 18 38 64 70
67 26 20 68 02 62 12 20 95 63 94 39 63 08 40 91 66 49 94 21
24 55 58 05 66 73 99 26 97 17 78 78 96 83 14 88 34 89 63 72
21 36 23 09 75 00 76 44 20 45 35 14 00 61 33 97 34 31 33 95
78 17 53 28 22 75 31 67 15 94 03 80 04 62 16 14 09 53 56 92
16 39 05 42 96 35 31 47 55 58 88 24 00 17 54 24 36 29 85 57
86 56 00 48 35 71 89 07 05 44 44 37 44 60 21 58 51 54 17 58
19 80 81 68 05 94 47 69 28 73 92 13 86 52 17 77 04 89 55 40
04 52 08 83 97 35 99 16 07 97 57 32 16 26 26 79 33 27 98 66
88 36 68 87 57 62 20 72 03 46 33 67 46 55 12 32 63 93 53 69
04 42 16 73 38 25 39 11 24 94 72 18 08 46 29 32 40 62 76 36
20 69 36 41 72 30 23 88 34 62 99 69 82 67 59 85 74 04 36 16
20 73 35 29 78 31 90 01 74 31 49 71 48 86 81 16 23 57 05 54
01 70 54 71 83 51 54 69 16 92 33 48 61 43 52 01 89 19 67 48
The product of these numbers is 26 63 78 14 = 1788696.
What is the greatest product of four adjacent numbers in the same direction (up, down, left, right, or diagonally) in the 2020 grid?
#include <stdio.h> #define _MSIZE 20 typedef unsigned long int ULINT; ULINT MaxProdInNxN(ULINT matrix[_MSIZE][_MSIZE], int n, int i0, int j0) { ULINT maxProd=0, prod; int i, j; prod = 1; for(i=0; prod!=0 && i<n; i++) { prod *= matrix[i0+i][j0+i]; } maxProd = prod; prod = 1; for(i=0; i<n; i++) { prod *= matrix[i0+n-1-i][j0+i]; } if(prod>maxProd) maxProd = prod; for(i=i0; i<i0+n; i++) { prod = 1; for(j=j0; prod!=0 && j<j0+n; j++) { prod *= matrix[i][j]; } if(prod>maxProd) maxProd = prod; } for(j=j0; j<j0+n; j++) { prod = 1; for(i=i0; prod!=0 && i<i0+n; i++) { prod *= matrix[i][j]; } if(prod>maxProd) maxProd = prod; } return maxProd; } ULINT MaxProdN(ULINT matrix[_MSIZE][_MSIZE], int n) { int i, j; ULINT maxProd=0, prod; for(i=0; i<_MSIZE-n; i++) { for(j=0; j<_MSIZE-n; j++) { prod = MaxProdInNxN(matrix, n, i, j); if(prod>maxProd) maxProd = prod; } } return maxProd; } int main() { ULINT matrix[_MSIZE][_MSIZE] = { {8, 2, 22, 97, 38, 15, 0, 40, 0, 75, 4, 5, 7, 78, 52, 12, 50, 77, 91, 8}, {49, 49, 99, 40, 17, 81, 18, 57, 60, 87, 17, 40, 98, 43, 69, 48, 4, 56, 62, 0}, {81, 49, 31, 73, 55, 79, 14, 29, 93, 71, 40, 67, 53, 88, 30, 3, 49, 13, 36, 65}, {52, 70, 95, 23, 4, 60, 11, 42, 69, 24, 68, 56, 1, 32, 56, 71, 37, 2, 36, 91}, {22, 31, 16, 71, 51, 67, 63, 89, 41, 92, 36, 54, 22, 40, 40, 28, 66, 33, 13, 80}, {24, 47, 32, 60, 99, 3, 45, 2, 44, 75, 33, 53, 78, 36, 84, 20, 35, 17, 12, 50}, {32, 98, 81, 28, 64, 23, 67, 10, 26, 38, 40, 67, 59, 54, 70, 66, 18, 38, 64, 70}, {67, 26, 20, 68, 2, 62, 12, 20, 95, 63, 94, 39, 63, 8, 40, 91, 66, 49, 94, 21}, {24, 55, 58, 5, 66, 73, 99, 26, 97, 17, 78, 78, 96, 83, 14, 88, 34, 89, 63, 72}, {21, 36, 23, 9, 75, 0, 76, 44, 20, 45, 35, 14, 0, 61, 33, 97, 34, 31, 33, 95}, {78, 17, 53, 28, 22, 75, 31, 67, 15, 94, 3, 80, 4, 62, 16, 14, 9, 53, 56, 92}, {16, 39, 5, 42, 96, 35, 31, 47, 55, 58, 88, 24, 0, 17, 54, 24, 36, 29, 85, 57}, {86, 56, 0, 48, 35, 71, 89, 7, 5, 44, 44, 37, 44, 60, 21, 58, 51, 54, 17, 58}, {19, 80, 81, 68, 5, 94, 47, 69, 28, 73, 92, 13, 86, 52, 17, 77, 4, 89, 55, 40}, {4, 52, 8, 83, 97, 35, 99, 16, 7, 97, 57, 32, 16, 26, 26, 79, 33, 27, 98, 66}, {88, 36, 68, 87, 57, 62, 20, 72, 3, 46, 33, 67, 46, 55, 12, 32, 63, 93, 53, 69}, {4, 42, 16, 73, 38, 25, 39, 11, 24, 94, 72, 18, 8, 46, 29, 32, 40, 62, 76, 36}, {20, 69, 36, 41, 72, 30, 23, 88, 34, 62, 99, 69, 82, 67, 59, 85, 74, 4, 36, 16}, {20, 73, 35, 29, 78, 31, 90, 1, 74, 31, 49, 71, 48, 86, 81, 16, 23, 57, 5, 54}, {1, 70, 54, 71, 83, 51, 54, 69, 16, 92, 33, 48, 61, 43, 52, 1, 89, 19, 67, 48} }; printf("%lu\n", MaxProdN(matrix,4)); return 0; }
12、Highly divisible triangular number
The sequence of triangle numbers is generated by adding the natural numbers. So the 7th triangle number would be 1 + 2 + 3 + 4 + 5 + 6 + 7 = 28. The first ten terms would be:
1, 3, 6, 10, 15, 21, 28, 36, 45, 55, ...
Let us list the factors of the first seven triangle numbers:
1: 1
3: 1,3
6: 1,2,3,6
10: 1,2,5,10
15: 1,3,5,15
21: 1,3,7,21
28: 1,2,4,7,14,28
We can see that 28 is the first triangle number to have over five divisors.
What is the value of the first triangle number to have over five hundred divisors?
三角形数序列是由对自然数的连加构造而成的。所以第七个三角形数是1 + 2 + 3 + 4 + 5 + 6 + 7 = 28. 那么三角形数序列中的前十个是:
1, 3, 6, 10, 15, 21, 28, 36, 45, 55, ...
下面我们列出前七个三角形数的约数:
1: 1
3: 1,3
6: 1,2,3,6
10: 1,2,5,10
15: 1,3,5,15
21: 1,3,7,21
28: 1,2,4,7,14,28
可以看出28是第一个拥有超过5个约数的三角形数。
那么第一个拥有超过500个约数的三角形数是多少?
#include <stdio.h> #include <stdbool.h> int trinumber(int n) { if(n % 2 == 0) { return (n / 2) * (n + 1); } else { return ((n + 1) / 2) * n; } } bool divnum(int n) { int i, sum = 0; for(i = 1; i * i < n; i++) { if(n % i == 0) { sum += 2; } } if(i * i == n) sum++; if(sum > 500) return true; else return false; } void solve(void) { int i, num; num = 0; for(i = 1; ; i++) { if(divnum(trinumber(i))) { printf("%d\n",trinumber(i)); break; } } } int main(void) { solve(); return 0; }
13、Large sum
Work out the first ten digits of the sum of the following one-hundred 50-digit numbers.
#include<iostream> #include<fstream> #include<string> using namespace std; int a[100][50]; int b[100]; void init() //将“number.txt”中的数据数据读入a[][]中 { int i,j,k,len; char c; string s; ifstream fin; fin.open("number.txt"); while((c=fin.get())!=EOF) { s.push_back(c); } len=s.size(); k=0; for(i=0;i<100;i++) { for(j=0;j<50;j++) { if(s[k]!='\n') a[i][j]=s[k++]-'0'; } k++; } } void solve() { init(); int i,j,s,t,r,k,flag; s=flag=k=0; for(j=49;j>=0;j--) { s+=flag; flag=0; for(i=0;i<100;i++) s+=a[i][j]; flag=s/10; t=s%10; b[k++]=t; if(j==0) b[k]=flag; s=0; } for(i=k;i>k-9;i--) cout<<b[i]; } int main() { solve(); return 0; }
The following iterative sequence is defined for the set of positive integers:
n n/2 (n is even) n 3n + 1 (n is odd)
Using the rule above and starting with 13, we generate the following sequence:
It can be seen that this sequence (starting at 13 and finishing at 1) contains 10 terms. Although it has not been proved yet (Collatz Problem), it is thought that all starting numbers finish at 1.
Which starting number, under one million, produces the longest chain?
NOTE: Once the chain starts the terms are allowed to go above one million.
题目大意:
以下迭代序列定义在整数集合上:
n n/2 (当n是偶数时) n 3n + 1 (当n是奇数时)
应用以上规则,并且以数字13开始,我们得到以下序列:
可以看出这个以13开始以1结束的序列包含10个项。虽然还没有被证明(Collatz问题),但是人们认为在这个规则下,以任何数字开始都会以1结束。
以哪个不超过100万的数字开始,能给得到最长的序列? 注意: 一旦序列开始之后,也就是从第二项开始,项是可以超过100万的。
方法1:
#include<stdio.h> #include<math.h> #include<stdbool.h> int powcount(long long n) //计算2的幂数 { int count=0; while(n>>=1) count++; return count; } bool ispower(long long v) //判断n是否为2的幂 { if(((v & (v - 1)) == 0)) return true; else return false; } int length(long long n) { int sum=1; while(1) { if(n==1) break; if((n & 1)==0) { if(ispower(n)) return sum+powcount(n); else n=n/2; } else n=3*n+1; sum++; } return sum; } int main() { int i,t,k,max=0; for(i=2; i<1000000; i++) { t=length(i); if(t>max) { max=t; k=i; } } printf("%lld\n",k); return 0; }
方法2:
#include<stdio.h> #include<math.h> #include<stdbool.h> int a[1000001]; void find() { long long i,j,k,f,sum,max=0; a[1]=1,a[2]=2; for(j=3; j<1000000; j++) { sum=1,k=i=j; while(1) { if((i & 1)==0) { i=i/2; if(i<k) { a[k]=sum+a[i]; break; } } else { i=3*i+1; } sum++; } if(a[k]>max) { max=a[k]; f=k; } } printf("%d\n",f); } int main() { find(); return 0; }
Starting in the top left corner of a 22 grid, and only being able to move to the right and down, there are exactly 6 routes to the bottom right corner.
How many such routes are there through a 2020 grid?
题目大意:
从一个22网格的左上角开始,有6条(不允许往回走)通往右下角的路。
对于2020的网格,这样的路有多少条?
#include<iostream> #include<cmath> using namespace std; long long a[21][21]; int main() { int i; for(i = 0; i < 21; i++) { a[0][i] = 1; a[i][0] = 1; } for (i = 1; i < 21; i++) for (int j = 1; j < 21; j++) a[i][j] = a[i][j-1] + a[i-1][j]; cout<<a[20][20]<<endl; return 0; }