- 教书育人杂志教书育人杂志社教书育人编辑部2024年第34期目录
QQ296078736
人工智能
卷首教育没有捷径韩庆文;1教育观察法制化视角下的幼儿园爱国主义教育邓敏;曾彬;4-7教育转型视域下优化师生关系的三个着力点严挺;8-10家庭环境对幼儿性格形成的影响钟兴琴;11-13探索创新中华优秀传统文化融入中职思政教育的创新路径高书文;李金怡;吴金星;14-16新媒体时代高中音乐教育特色发展路径朱静;17-19基于绘本阅读的幼儿阅读习惯培养丁艳娥;20-22本期话题_地域文化与学科教学的融合区
- 图像处理篇---图像预处理
Ronin-Lotus
图像处理篇深度学习篇程序代码篇图像处理人工智能opencvpython深度学习计算机视觉
文章目录前言一、通用目的1.1数据标准化目的实现1.2噪声抑制目的实现高斯滤波中值滤波双边滤波1.3尺寸统一化目的实现1.4数据增强目的实现1.5特征增强目的实现:边缘检测直方图均衡化锐化二、分领域预处理2.1传统机器学习(如SVM、随机森林)2.1.1特点2.1.2预处理重点灰度化二值化形态学操作特征工程2.2深度学习(如CNN、Transformer)2.2.1特点2.2.2预处理重点通道顺序
- 目前市场上主流的机器视觉的框架有哪些?他们的特点及优劣
yuanpan
机器学习计算机视觉
目前市场上主流的机器视觉框架和工具可以分为商业软件、开源工具和深度学习框架三大类。以下是它们的总结及特点对比:1.商业软件(1)Halcon(MVTec)特点:专注于工业机器视觉,提供高精度、高效率的算法。支持复杂的工业应用,如缺陷检测、3D视觉、深度学习等。提供图形化开发工具HDevelop和多种编程接口。优势:算法优化好,适合实时工业应用。硬件兼容性强,支持多种工业相机和设备。劣势:商业软件,
- halcon里3d平面度检测程序_激光三角测量法在工业视觉检测上的应用
jiago 王佳东fr
点击上方“3D视觉工坊”,选择“星标”干货第一时间送达激光三角测量法,是工业视觉领域较为常用也是比较容易理解的一种3D检测算法。本文主要从应用层次来阐述,包括相机和激光选型、搭接方式的优劣点分析、软件开发过程中的注意事项等。1.原理及演示将一条单线细激光光线投射到物体表面,由于物体表面高度发生变化,使得激光线发生了弯曲,根据这个线的变形,可以计算出精确的物体表面三维轮廓。如下图所示,基本组成结构有
- 书籍-《自然语言理解解析》
书籍:UnderstandingNaturalLanguageUnderstanding作者:ErikCambria出版:Springer编辑:陈萍萍的公主@一点人工一点智能下载:书籍下载-《自然语言理解解析》01书籍介绍大约半个世纪前,AI先驱们如MarvinMinsky开始了一项雄心勃勃的项目:模拟人类大脑如何编码和解码意义。虽然现在我们借助神经科学对大脑有了更多的了解,但距离揭开大脑的秘密,
- 1.1PaddleTS_环境配置:一个易用的深度时序建模的Python库
pythonQA
pythonpaddlepaddle
PaddleTS是一个易用的深度时序建模的Python库,它基于飞桨深度学习框架PaddlePaddle,专注业界领先的深度模型,旨在为领域专家和行业用户提供可扩展的时序建模能力和便捷易用的用户体验。PaddleTS的主要特性包括:设计统一数据结构,实现对多样化时序数据的表达,支持单目标与多目标变量,支持多类型协变量封装基础模型功能,如数据加载、回调设置、损失函数、训练过程控制等公共方法,帮助开发
- 【大模型科普】AIGC技术发展与应用实践(一文读懂AIGC)
人工智能
【专栏介绍】⌈⌈⌈人工智能与大模型应用⌋⌋⌋人工智能(AI)通过算法模拟人类智能,利用机器学习、深度学习等技术驱动医疗、金融等领域的智能化。大模型是千亿参数的深度神经网络(如ChatGPT),经海量数据训练后能完成文本生成、图像创作等复杂任务,显著提升效率,但面临算力消耗、数据偏见等挑战。当前正加速与教育、科研融合,未来需平衡技术创新与伦理风险,推动可持续发展。文章目录一、AIGC概述(一)什么是
- 代码逐行解析 | 教你在C++中使用深度学习提取特征点
3D视觉工坊
3D视觉从入门到精通c++深度学习开发语言人工智能
点击下方卡片,关注「3D视觉工坊」公众号选择星标,干货第一时间送达扫描下方二维码,加入3D视觉技术星球,星球内汇集了众多3D视觉实战问题,以及各个模块的学习资料:最新顶会论文、书籍、源码、视频(近20门系统课程[星球成员可免费学习])等。想要入门3D视觉、做项目、搞科研,就加入我们吧。作者:泡椒味的口香糖|来源:3DCV添加微信:dddvision
- 3DXML 与 SOLIDWORKS 格式转换:技术协同及迪威模型方案
3D小将
迪威模型联讯软件SolidWorks模型UG模型Rhino模型SketchUp模型catia模型stl模型stp模型
一、引言在产品设计的前沿领域,3DXML与SOLIDWORKS作为主流格式,虽各有所长,但因格式差异,常成为数据流通与协作的阻碍。对于技术人员和学生党而言,掌握二者间的转换技术,不仅能提升设计效率,更是参与复杂项目协作的必备技能。迪威模型在线转换功能,凭借其先进技术,为这一转换难题提供了高效解决方案。二、3DXML与SOLIDWORKS格式基础(一)3DXML3DXML由达索系统精心打造,其核心压
- Camera常用算法介绍1
记录美好
android相机学习算法经验分享智能手机
Camera常用数据格式及算法介绍1二、Camera常用算法介绍2.1基础图像处理算法2.1.1HDR算法2.1.1.1HDR算法概述2.1.1.2发展历程2.1.1.2.1传统多帧合成阶段(2010年代初期)2.1.1.2.2.算法优化阶段(2016-2020年)2.1.1.2.3实时处理阶段(2020年至今)2.1.1.3技术原理2.1.1.3.1多帧采集2.1.1.3.2图像合成2.1.1.
- EmbodiedSAM:在线实时3D实例分割,利用视觉基础模型实现高效场景理解
数据猎手小k
3D实例分割在线实时感知视觉基础模型(VFM)应用
2025-02-12,由清华大学和南洋理工大学的研究团队开发一种名为EmbodiedSAM(ESAM)的在线3D实例分割框架。该框架利用2D视觉基础模型辅助实时3D场景理解,解决了高质量3D数据稀缺的难题,为机器人导航、操作等任务提供了高效、准确的视觉感知能力。一、研究背景随着机器人技术和人工智能的发展,机器人在复杂环境中执行任务(如导航、操作和交互)的能力越来越依赖于对三维(3D)场景的实时、准
- 初探 Threejs 物理引擎CANNON,解锁 3D 动态魅力
伶俜Monster
Threejswebgl前端3dthreejscannon.js
简介Cannon.js是一个基于JavaScript的物理引擎,它可以在浏览器中模拟物理效果。它支持碰撞检测、刚体动力学、约束等物理效果,可以用于创建逼真的物理场景和交互。参考文档官方示例原理Cannon.js使用了欧拉角来表示物体的旋转,而不是四元数。这使得它在处理旋转时更加直观和易于理解。Cannon.js还支持多种碰撞检测算法,包括离散碰撞检测和连续碰撞检测。Cannon.js还支持多种约束
- 【图像处理基石】什么是HDR图片?
AndrewHZ
AI算法工程师面试指北图像处理基石图像处理算法计算机视觉HDR高动态范围包围曝光opencv
1.什么是HDR图片?HDR(高动态范围图像,HighDynamicRange)是一种通过技术手段扩展照片明暗细节的成像方式。以下是关于HDR的详细说明:核心原理动态范围:指图像中最亮和最暗区域之间的亮度差。人眼能感知的动态范围远高于普通相机,HDR通过合成多张不同曝光的照片(如欠曝、正常、过曝),平衡高光和阴影细节。HDR的优势保留细节:避免强光下过曝(如天空发白)或阴影中欠曝(如暗部死黑)。增
- 深度学习-130-RAG技术之基于Anything LLM搭建本地私人知识库的应用策略问题总结(一)
皮皮冰燃
深度学习深度学习人工智能RAG
文章目录1AnythingLLM的本地知识库1.1本地知识库应用场景1.2效果对比及思考1.3本地体现在哪些方面1.3.1知识在本地1.3.2分割后的文档在本地1.3.3大模型部署运行在本地2问错问题带来的问题2.1常见的问题2.2原因分析3为什么LLM不使用我的文件?3.1LLM不是万能的【omnipotent】3.2LLM不会自省【introspect】3.3AnythingLLM是如何工作的
- 3DMAX点云算法:实现毫米级BIM模型偏差检测(附完整代码)
夏末之花
人工智能
摘要本文基于激光雷达点云数据与BIM模型的高精度对齐技术,提出一种融合动态体素化与多模态特征匹配的偏差检测方法。通过点云预处理、语义分割、模型配准及差异分析,最终实现建筑构件毫米级偏差的可视化检测。文中提供关键代码实现,涵盖点云处理、特征提取与深度学习模型搭建。一、核心算法流程点云预处理与特征增强去噪与下采样:采用统计滤波与体素网格下采样,去除离群点并降低数据量。语义分割:基于PointNet++
- 游戏开发引擎对比:Godot、Unity、Unreal与cocos2d的优劣分析
scoone
游戏引擎godotunity
在游戏开发的世界中,选择合适的游戏引擎是项目成功的关键之一。本文将对比四种流行的游戏开发引擎:Godot、Unity、UnrealEngine和cocos2d,分析各自的优缺点,帮助开发者做出明智的选择。Godot:优点:开源且免费,无商业授权费用。轻量级,适合中小型游戏开发。使用GDScript脚本语言,易于上手。跨平台支持良好。缺点:社区相对较小,资源不如Unity丰富。在3D游戏开发方面不如
- 密码安全:如何识别强弱密码,并打造铁壁防线!
喵手
零基础学Java安全php开发语言
全文目录:开篇语前言:一场关于密码的角力赛目录密码的弱点:为什么弱密码是个大问题如何定义强密码?强密码的特点:举个例子:如何识别密码强弱?简单技巧帮你判断1.**密码长度:是否足够长?**示例代码演示代码解释:测试结果示例:2.**复杂度:是否包含特殊字符?**示例代码演示代码解释:测试结果示例:小结:3.**模式识别:是否包含常见模式?**️密码管理小技巧:打造更安全的数字生活1.**使用密码管
- 基于python的ansys_基于python的感知机
weixin_39687990
基于python的ansys
一、1、感知机可以描述为一个线性方程,用python的伪代码可表示为:sum(weight_i*x_i)+bias->activation#activation表示激活函数,x_i和weight_i是分别为与当前神经元连接的其它神经元的输入以及连接的权重。bias表示当前神经元的输出阀值(或称偏置)。箭头(->)左边的数据,就是激活函数的输入2、定义激活函数f:deffunc_activator(
- 数据增强:扩充数据集,提升模型的鲁棒性
AI天才研究院
DeepSeekR1&大数据AI人工智能大模型LLM大模型落地实战指南计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
数据增强:扩充数据集,提升模型的鲁棒性1.背景介绍1.1数据集的重要性在机器学习和深度学习领域中,数据集是训练模型的基础。高质量的数据集对于构建准确、鲁棒的模型至关重要。然而,在现实世界中,获取大量高质量的数据通常是一个巨大的挑战。数据采集过程耗时耗力,而且成本高昂。此外,某些领域的数据存在隐私和安全问题,难以获取。1.2数据集不足的挑战当数据集规模有限时,模型很容易过拟合,无法很好地推广到新的、
- NLP高频面试题(三)——普通RNN的梯度消失和梯度爆炸问题
Chaos_Wang_
NLP常见面试题自然语言处理rnn人工智能
普通RNN(循环神经网络)的梯度消失和梯度爆炸问题是指在训练深层或长序列的RNN模型时出现的两种典型问题:一、梯度消失(VanishingGradient)梯度消失是指在反向传播过程中,梯度逐层传播时变得越来越小,最终趋于接近0,导致模型前层的参数难以更新。原因:在反向传播时,每一层的梯度是通过链式法则计算得到的。因为链式求导中不断乘以一个较小的数值(小于1),随着层数或时间步的增加,梯度将指数级
- Docker打包深度学习项目
FLY_LTL
docker深度学习容器
文章目录Docker打包深度学习项目1.Docker和NVIDIAContainerToolkit的安装1.Docker2.NVIDIAContainerToolkit3.添加国内镜像源2.使用Dockerfile打包并保存镜像1.Dockerfile2.通过Dockerfile生成镜像3.保存镜像和加载4.运行Docker并测试参考Docker打包深度学习项目本文来源于个人实践总结,供各位同学参
- MMScan数据集:首个最大的多模态3D场景数据集,包含层次化的语言标注
数据集
2024-10-24,由上海人工智能实验室联合多所高校创建了MMScan,这是迄今为止最大的多模态3D场景数据集,包含了层次化的语言标注。数据集的建立,不仅推动了3D场景理解的研究进展,还为训练和评估多模态3D感知模型提供了宝贵的资源。一、研究背景:随着大型语言模型(LLMs)的兴起和与其他数据模态的融合,多模态3D感知因其与物理世界的连接而受到越来越多的关注,并取得了快速进展。然而,现有的数据集
- 游戏成瘾与学习动力激发策略研究——了解“情感解离”“创伤理论”
*TQK*
知也思维认知心理学研究
一、情感解离(EmotionalDissociation)定义:情感解离是一种心理防御机制,指个体在经历无法承受的情绪压力或创伤时,通过切断情感体验与认知、记忆或现实感知的联系来保护自我。它不是简单的“麻木”,而是大脑为应对极端刺激而启动的“紧急逃生通道”。核心特征1、意识分裂现实解离:感到身体或环境“不真实”(如玩游戏时出现“灵魂出窍”般的视角抽离)情感隔离:能描述事件但无法体验对应情绪(如你通
- 深度革命:ResNet 如何用 “残差连接“ 颠覆深度学习
安意诚Matrix
机器学习笔记深度学习人工智能
一文快速了解ResNet创新点在深度学习的历史长河中,2015年或许是最具突破性的一年。这一年,微软亚洲研究院的何恺明团队带着名为ResNet(残差网络)的模型横空出世,在ImageNet图像分类竞赛中以3.57%的错误率夺冠,将人类视觉的识别误差(约5.1%)远远甩在身后。更令人震撼的是,ResNet将神经网络的深度推至152层,彻底打破了"深层网络无法训练"的魔咒。这场革命的核心,正是一个简单
- 智能形状匹配技术全解析:从经典算法到深度学习与神经形态计算【超级详细版】
AI筑梦师
计算机视觉算法深度学习人工智能机器学习计算机视觉python
智能形状匹配技术全解析:从经典算法到深度学习与神经形态计算1.引言1.1研究背景在计算机视觉、模式识别、医学影像分析和自动驾驶等领域,形状匹配是核心任务之一。然而,现实世界的形状往往存在可变性(Variability),主要体现在以下几个方面:形变(Deformation):物体可能由于柔性材料、外力作用或生物运动发生非刚性形变。尺度变化(ScaleVariation):目标形状在不同场景下可能大
- Python 模拟鼠标轨迹算法
a485240
鼠标轨迹计算机外设
一.鼠标轨迹模拟简介传统的鼠标轨迹模拟依赖于简单的数学模型,如直线或曲线路径。然而,这种方法难以捕捉到人类操作的复杂性和多样性。AI大模型的出现,使得能够通过深度学习技术,学习并模拟更自然的鼠标移动行为。二.鼠标轨迹算法实现AI大模型通过学习大量的人类鼠标操作数据,能够识别和模拟出自然且具有个体差异的鼠标轨迹。以下是实现这一技术的关键步骤:数据收集:收集不同玩家在各种游戏环境中的鼠标操作数据,包括
- 技术转管理,需要克服的4大硬伤!
项目经理刘湖南
职场和发展
许多技术人员都会主动规划自己的职业发展路径,而晋升管理岗,向项目经理或者产品经理转型,是大多数技术人才的选择。然而,技术思维和管理思维存在较大的差异。从技术转管理,有四大难点。一、角色转换难技术人员作为执行层,专注的是技术实现与细节把控,只要专心做好自己份内的事即可。比如,开发工程师要保证代码质量,运维工程师负责系统稳定性。而项目经理或者产品经理作为组织者,需要建立全局视角和系统思维,带领团队成员
- 知识蒸馏:从软标签压缩到推理能力迁移的工程实践(基于教师-学生模型的高效压缩技术与DeepSeek合成数据创新)
AI仙人掌
人工智能AI人工智能深度学习语言模型机器学习
知识蒸馏通过迁移教师模型(复杂)的知识到学生模型(轻量),实现模型压缩与性能平衡。核心在于利用教师模型的软标签(概率分布)替代独热编码标签,学生模型不仅学习到教师模型输出数据的类别信息,还能够捕捉到类别之间的相似性和关系,从而提升其泛化能力核心概念知识蒸馏的核心目标是实现从教师模型到学生模型的知识迁移。在实际应用中,无论是大规模语言模型(LLMs)还是其他类型的神经网络模型,都会通过softmax
- 什么是机器视觉3D引导大模型
视觉人机器视觉
机器视觉3D3d数码相机机器人人工智能大数据
机器视觉3D引导大模型是结合深度学习、多模态数据融合与三维感知技术的智能化解决方案,旨在提升工业自动化、医疗、物流等领域的操作精度与效率。以下从技术架构、行业应用、挑战与未来趋势等方面综合分析:一、技术架构与核心原理多模态数据融合与深度学习3D视觉引导大模型通常整合RGB图像、点云数据、深度信息等多模态输入,通过深度学习算法(如卷积神经网络、Transformer)进行特征提取与融合。例如,油田机
- 【财经信息差】2024年12月27日最新财经资讯一览 每日财经热点一网打尽
代码简单说
AI观财经:财经信息差AI观财经财经信息差今日财经资讯财经热点今日资讯
大家好,欢迎来到财经信息差!每天,我们将带你直击全球财经动态,精选最新的市场变化、政策动向与产业趋势,让你在最短的时间内,轻松掌握最关键的财经资讯。随着人工智能技术的迅猛发展,我们将用AI的视角为你解析财经热点、企业动向及全球经济变化,让复杂的信息变得简单易懂,帮助你做出更明智的投资决策。财经领域股票市场美股三大指数集体低开,大型科技股多数下跌,纳斯达克金龙指数跌1.07%。小鹏汽车跌3.32%,
- 用MiddleGenIDE工具生成hibernate的POJO(根据数据表生成POJO类)
AdyZhang
POJOeclipseHibernateMiddleGenIDE
推荐:MiddlegenIDE插件, 是一个Eclipse 插件. 用它可以直接连接到数据库, 根据表按照一定的HIBERNATE规则作出BEAN和对应的XML ,用完后你可以手动删除它加载的JAR包和XML文件! 今天开始试着使用
- .9.png
Cb123456
android
“点九”是andriod平台的应用软件开发里的一种特殊的图片形式,文件扩展名为:.9.png
智能手机中有自动横屏的功能,同一幅界面会在随着手机(或平板电脑)中的方向传感器的参数不同而改变显示的方向,在界面改变方向后,界面上的图形会因为长宽的变化而产生拉伸,造成图形的失真变形。
我们都知道android平台有多种不同的分辨率,很多控件的切图文件在被放大拉伸后,边
- 算法的效率
天子之骄
算法效率复杂度最坏情况运行时间大O阶平均情况运行时间
算法的效率
效率是速度和空间消耗的度量。集中考虑程序的速度,也称运行时间或执行时间,用复杂度的阶(O)这一标准来衡量。空间的消耗或需求也可以用大O表示,而且它总是小于或等于时间需求。
以下是我的学习笔记:
1.求值与霍纳法则,即为秦九韶公式。
2.测定运行时间的最可靠方法是计数对运行时间有贡献的基本操作的执行次数。运行时间与这个计数成正比。
- java数据结构
何必如此
java数据结构
Java 数据结构
Java工具包提供了强大的数据结构。在Java中的数据结构主要包括以下几种接口和类:
枚举(Enumeration)
位集合(BitSet)
向量(Vector)
栈(Stack)
字典(Dictionary)
哈希表(Hashtable)
属性(Properties)
以上这些类是传统遗留的,在Java2中引入了一种新的框架-集合框架(Collect
- MybatisHelloWorld
3213213333332132
//测试入口TestMyBatis
package com.base.helloworld.test;
import java.io.IOException;
import org.apache.ibatis.io.Resources;
import org.apache.ibatis.session.SqlSession;
import org.apache.ibat
- Java|urlrewrite|URL重写|多个参数
7454103
javaxmlWeb工作
个人工作经验! 如有不当之处,敬请指点
1.0 web -info 目录下建立 urlrewrite.xml 文件 类似如下:
<?xml version="1.0" encoding="UTF-8" ?>
<!DOCTYPE u
- 达梦数据库+ibatis
darkranger
sqlmysqlibatisSQL Server
--插入数据方面
如果您需要数据库自增...
那么在插入的时候不需要指定自增列.
如果想自己指定ID列的值, 那么要设置
set identity_insert 数据库名.模式名.表名;
----然后插入数据;
example:
create table zhabei.test(
id bigint identity(1,1) primary key,
nam
- XML 解析 四种方式
aijuans
android
XML现在已经成为一种通用的数据交换格式,平台的无关性使得很多场合都需要用到XML。本文将详细介绍用Java解析XML的四种方法。
XML现在已经成为一种通用的数据交换格式,它的平台无关性,语言无关性,系统无关性,给数据集成与交互带来了极大的方便。对于XML本身的语法知识与技术细节,需要阅读相关的技术文献,这里面包括的内容有DOM(Document Object
- spring中配置文件占位符的使用
avords
1.类
<?xml version="1.0" encoding="UTF-8"?><!DOCTYPE beans PUBLIC "-//SPRING//DTD BEAN//EN" "http://www.springframework.o
- 前端工程化-公共模块的依赖和常用的工作流
bee1314
webpack
题记: 一个人的项目,还有工程化的问题嘛? 我们在推进模块化和组件化的过程中,肯定会不断的沉淀出我们项目的模块和组件。对于这些沉淀出的模块和组件怎么管理?另外怎么依赖也是个问题? 你真的想这样嘛? var BreadCrumb = require(‘../../../../uikit/breadcrumb’); //真心ugly。
- 上司说「看你每天准时下班就知道你工作量不饱和」,该如何回应?
bijian1013
项目管理沟通IT职业规划
问题:上司说「看你每天准时下班就知道你工作量不饱和」,如何回应
正常下班时间6点,只要是6点半前下班的,上司都认为没有加班。
Eno-Bea回答,注重感受,不一定是别人的
虽然我不知道你具体从事什么工作与职业,但是我大概猜测,你是从事一项不太容易出现阶段性成果的工作
- TortoiseSVN,过滤文件
征客丶
SVN
环境:
TortoiseSVN 1.8
配置:
在文件夹空白处右键
选择 TortoiseSVN -> Settings
在 Global ignote pattern 中添加要过滤的文件:
多类型用英文空格分开
*name : 过滤所有名称为 name 的文件或文件夹
*.name : 过滤所有后缀为 name 的文件或文件夹
--------
- 【Flume二】HDFS sink细说
bit1129
Flume
1. Flume配置
a1.sources=r1
a1.channels=c1
a1.sinks=k1
###Flume负责启动44444端口
a1.sources.r1.type=avro
a1.sources.r1.bind=0.0.0.0
a1.sources.r1.port=44444
a1.sources.r1.chan
- The Eight Myths of Erlang Performance
bookjovi
erlang
erlang有一篇guide很有意思: http://www.erlang.org/doc/efficiency_guide
里面有个The Eight Myths of Erlang Performance: http://www.erlang.org/doc/efficiency_guide/myths.html
Myth: Funs are sl
- java多线程网络传输文件(非同步)-2008-08-17
ljy325
java多线程socket
利用 Socket 套接字进行面向连接通信的编程。客户端读取本地文件并发送;服务器接收文件并保存到本地文件系统中。
使用说明:请将TransferClient, TransferServer, TempFile三个类编译,他们的类包是FileServer.
客户端:
修改TransferClient: serPort, serIP, filePath, blockNum,的值来符合您机器的系
- 读《研磨设计模式》-代码笔记-模板方法模式
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
import java.sql.Connection;
import java.sql.DriverManager;
import java.sql.PreparedStatement;
import java.sql.ResultSet;
- 配置心得
chenyu19891124
配置
时间就这样不知不觉的走过了一个春夏秋冬,转眼间来公司已经一年了,感觉时间过的很快,时间老人总是这样不停走,从来没停歇过。
作为一名新手的配置管理员,刚开始真的是对配置管理是一点不懂,就只听说咱们公司配置主要是负责升级,而具体该怎么做却一点都不了解。经过老员工的一点点讲解,慢慢的对配置有了初步了解,对自己所在的岗位也慢慢的了解。
做了一年的配置管理给自总结下:
1.改变
从一个以前对配置毫无
- 对“带条件选择的并行汇聚路由问题”的再思考
comsci
算法工作软件测试嵌入式领域模型
2008年上半年,我在设计并开发基于”JWFD流程系统“的商业化改进型引擎的时候,由于采用了新的嵌入式公式模块而导致出现“带条件选择的并行汇聚路由问题”(请参考2009-02-27博文),当时对这个问题的解决办法是采用基于拓扑结构的处理思想,对汇聚点的实际前驱分支节点通过算法预测出来,然后进行处理,简单的说就是找到造成这个汇聚模型的分支起点,对这个起始分支节点实际走的路径数进行计算,然后把这个实际
- Oracle 10g 的clusterware 32位 下载地址
daizj
oracle
Oracle 10g 的clusterware 32位 下载地址
http://pan.baidu.com/share/link?shareid=531580&uk=421021908
http://pan.baidu.com/share/link?shareid=137223&uk=321552738
http://pan.baidu.com/share/l
- 非常好的介绍:Linux定时执行工具cron
dongwei_6688
linux
Linux经过十多年的发展,很多用户都很了解Linux了,这里介绍一下Linux下cron的理解,和大家讨论讨论。cron是一个Linux 定时执行工具,可以在无需人工干预的情况下运行作业,本文档不讲cron实现原理,主要讲一下Linux定时执行工具cron的具体使用及简单介绍。
新增调度任务推荐使用crontab -e命令添加自定义的任务(编辑的是/var/spool/cron下对应用户的cr
- Yii assets目录生成及修改
dcj3sjt126com
yii
assets的作用是方便模块化,插件化的,一般来说出于安全原因不允许通过url访问protected下面的文件,但是我们又希望将module单独出来,所以需要使用发布,即将一个目录下的文件复制一份到assets下面方便通过url访问。
assets设置对应的方法位置 \framework\web\CAssetManager.php
assets配置方法 在m
- mac工作软件推荐
dcj3sjt126com
mac
mac上的Terminal + bash + screen组合现在已经非常好用了,但是还是经不起iterm+zsh+tmux的冲击。在同事的强烈推荐下,趁着升级mac系统的机会,顺便也切换到iterm+zsh+tmux的环境下了。
我为什么要要iterm2
切换过来也是脑袋一热的冲动,我也调查过一些资料,看了下iterm的一些优点:
* 兼容性好,远程服务器 vi 什么的低版本能很好兼
- Memcached(三)、封装Memcached和Ehcache
frank1234
memcachedehcachespring ioc
本文对Ehcache和Memcached进行了简单的封装,这样对于客户端程序无需了解ehcache和memcached的差异,仅需要配置缓存的Provider类就可以在二者之间进行切换,Provider实现类通过Spring IoC注入。
cache.xml
<?xml version="1.0" encoding="UTF-8"?>
- Remove Duplicates from Sorted List II
hcx2013
remove
Given a sorted linked list, delete all nodes that have duplicate numbers, leaving only distinct numbers from the original list.
For example,Given 1->2->3->3->4->4->5,
- Spring4新特性——注解、脚本、任务、MVC等其他特性改进
jinnianshilongnian
spring4
Spring4新特性——泛型限定式依赖注入
Spring4新特性——核心容器的其他改进
Spring4新特性——Web开发的增强
Spring4新特性——集成Bean Validation 1.1(JSR-349)到SpringMVC
Spring4新特性——Groovy Bean定义DSL
Spring4新特性——更好的Java泛型操作API
Spring4新
- MySQL安装文档
liyong0802
mysql
工作中用到的MySQL可能安装在两种操作系统中,即Windows系统和Linux系统。以Linux系统中情况居多。
安装在Windows系统时与其它Windows应用程序相同按照安装向导一直下一步就即,这里就不具体介绍,本文档只介绍Linux系统下MySQL的安装步骤。
Linux系统下安装MySQL分为三种:RPM包安装、二进制包安装和源码包安装。二
- 使用VS2010构建HotSpot工程
p2p2500
HotSpotOpenJDKVS2010
1. 下载OpenJDK7的源码:
http://download.java.net/openjdk/jdk7
http://download.java.net/openjdk/
2. 环境配置
▶
- Oracle实用功能之分组后列合并
seandeng888
oracle分组实用功能合并
1 实例解析
由于业务需求需要对表中的数据进行分组后进行合并的处理,鉴于Oracle10g没有现成的函数实现该功能,且该功能如若用JAVA代码实现会比较复杂,因此,特将SQL语言的实现方式分享出来,希望对大家有所帮助。如下:
表test 数据如下:
ID,SUBJECTCODE,DIMCODE,VALUE
1&nbs
- Java定时任务注解方式实现
tuoni
javaspringjvmxmljni
Spring 注解的定时任务,有如下两种方式:
第一种:
<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:xsi="http
- 11大Java开源中文分词器的使用方法和分词效果对比
yangshangchuan
word分词器ansj分词器Stanford分词器FudanNLP分词器HanLP分词器
本文的目标有两个:
1、学会使用11大Java开源中文分词器
2、对比分析11大Java开源中文分词器的分词效果
本文给出了11大Java开源中文分词的使用方法以及分词结果对比代码,至于效果哪个好,那要用的人结合自己的应用场景自己来判断。
11大Java开源中文分词器,不同的分词器有不同的用法,定义的接口也不一样,我们先定义一个统一的接口:
/**
* 获取文本的所有分词结果, 对比