为了改善一项机器学习或深度学习的任务,首先想到的是从模型,数据,优化器等方面进行优化,但效果有时不大理想,这时可以尝试一下其他方法:比如模型集成,迁移学习,数据增强等优化方法。这里介绍利用模型集成来提升任务的性能。
集成学习是提升分类器或预测系统效果的重要方法。原理就是集合多个模型的效果,得到一个强于单个模型效果的模型。具体使用中还要考虑各个模型的差异性,如果各个模型性能差不多,可以取预测结果的平均值,如果性能差距较大,模型集成后的性能可能不如当个模型,相差较大时可以采用加权平均的方法,其中权重可以采用 SLSQP, Nelder-Mead, Powell, CG , BFGS 等优化算法获取。
import torch
import torch.nn as nn
import torch.optim as optim
import torch.nn.functional as F
import torch.backends.cudnn as cudnn
import numpy as np
import torchvision
import torchvision.transforms as transforms
from torch.utils.data import DataLoader
from collections import Counter
# 一些超参数
BATCHSIZE=100
DOWNLOAD_MNIST=False
EPOCHES=20
LR=0.001
# 这里使用三个网络
class CNNNet(nn.Module):
def __init__(self):
super(CNNNet,self).__init__()
self.conv1 = nn.Conv2d(in_channels=3,out_channels=16,kernel_size=5,stride=1)
self.pool1 = nn.MaxPool2d(kernel_size=2,stride=2)
self.conv2 = nn.Conv2d(in_channels=16,out_channels=36,kernel_size=3,stride=1)
self.pool2 = nn.MaxPool2d(kernel_size=2, stride=2)
self.fc1 = nn.Linear(1296,128)
self.fc2 = nn.Linear(128,10)
def forward(self,x):
x=self.pool1(F.relu(self.conv1(x)))
x=self.pool2(F.relu(self.conv2(x)))
#print(x.shape)
x=x.view(-1,36*6*6)
x=F.relu(self.fc2(F.relu(self.fc1(x))))
return x
class Net(nn.Module):
def __init__(self):
super(Net, self).__init__()
self.conv1 = nn.Conv2d(3, 16, 5)
self.pool1 = nn.MaxPool2d(2, 2)
self.conv2 = nn.Conv2d(16, 36, 5)
self.pool2 = nn.MaxPool2d(2, 2)
self.aap=nn.AdaptiveAvgPool2d(1) # 全局平均池化
self.fc3 = nn.Linear(36, 10)
def forward(self, x):
x = self.pool1(F.relu(self.conv1(x)))
x = self.pool2(F.relu(self.conv2(x)))
x = self.aap(x)
x = x.view(x.shape[0], -1)
x = self.fc3(x)
return x
class LeNet(nn.Module):
def __init__(self):
super(LeNet, self).__init__()
self.conv1 = nn.Conv2d(3, 6, 5)
self.conv2 = nn.Conv2d(6, 16, 5)
self.fc1 = nn.Linear(16*5*5, 120)
self.fc2 = nn.Linear(120, 84)
self.fc3 = nn.Linear(84, 10)
def forward(self, x):
out = F.relu(self.conv1(x))
out = F.max_pool2d(out, 2)
out = F.relu(self.conv2(out))
out = F.max_pool2d(out, 2)
out = out.view(out.size(0), -1)
out = F.relu(self.fc1(out))
out = F.relu(self.fc2(out))
out = self.fc3(out)
return out
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
print('==> Preparing data..')
transform_train = transforms.Compose([
transforms.RandomCrop(32, padding=4),
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010)),
])
transform_test = transforms.Compose([
transforms.ToTensor(),
transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010)),
])
trainset = torchvision.datasets.CIFAR10(root='./data', train=True, download=False, transform=transform_train)
trainloader = torch.utils.data.DataLoader(trainset, batch_size=128, shuffle=True, num_workers=2)
testset = torchvision.datasets.CIFAR10(root='./data', train=False, download=False, transform=transform_test)
testloader = torch.utils.data.DataLoader(testset, batch_size=100, shuffle=False, num_workers=2)
classes = ('plane', 'car', 'bird', 'cat', 'deer', 'dog', 'frog', 'horse', 'ship', 'truck')
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
print('==> Building model..')
net1 = CNNNet()
net2 = Net()
net3 = LeNet()
mlps=[net1.to(device),net2.to(device),net3.to(device)]
optimizer = optim.Adam([{'params':mlp.parameters()} for mlp in mlps],lr=LR)
loss_function=nn.CrossEntropyLoss()
for ep in range(EPOCHES):
for img ,label in trainloader:
img,label = img.to(device),label.to(device)
optimizer.zero_grad()
for mlp in mlps:
mlp.train()
out = mlp(img)
loss = loss_function(out,label)
loss.backward()
optimizer.step()
pre=[]
vote_correct = 0
mlps_correct=[0 for i in range(len(mlps))]
for img ,label in testloader:
img,label = img.to(device),label.to(device)
for i,mlp in enumerate(mlps):
mlp.eval()
out = mlp(img)
_, prediction = torch.max(out,1)
pre_num = prediction.cpu().numpy()
mlps_correct[i]+=(pre_num==label.cpu().numpy()).sum()
pre.append(pre_num)
arr = np.array(pre)
pre.clear()
result=[Counter(arr[:,i]).most_common(1)[0][0] for i in range(BATCHSIZE)]
vote_correct+=(result == label.cpu().numpy()).sum()
print("epoch:" + str(ep)+"集成模型的正确率"+str(vote_correct/len(testloader)))
for idx, coreect in enumerate( mlps_correct):
print("模型"+str(idx)+"的正确率为:"+str(coreect/len(testloader)))
'''
epoch:19集成模型的正确率69.57 循环次数高了以后精度可以达到 74%
模型0的正确率为:61.84
模型1的正确率为:60.24
模型2的正确率为:65.6
'''
精度够不够很大程度与网络模型有关,这里使用经典的 VGG16 作为模型对数据进行分类,这个精度可以达到 90%,,就是训练的好慢啊。。
cfg = { # 各层的输出通道。
'VGG16': [64, 64, 'M', 128, 128, 'M', 256, 256, 256, 'M', 512, 512, 512, 'M', 512, 512, 512, 'M'],
'VGG19': [64, 64, 'M', 128, 128, 'M', 256, 256, 256, 256, 'M', 512, 512, 512, 512, 'M', 512, 512, 512, 512, 'M'],
}
class VGG(nn.Module):
def __init__(self, vgg_name):
super(VGG, self).__init__()
self.features = self._make_layers(cfg[vgg_name])
self.classifier = nn.Linear(512, 10)
def forward(self, x):
out = self.features(x)
out = out.view(out.size(0), -1)
out = self.classifier(out)
return out
def _make_layers(self, cfg):
layers = []
in_channels = 3
for x in cfg:
if x == 'M':
layers += [nn.MaxPool2d(kernel_size=2, stride=2)]
else:
layers += [nn.Conv2d(in_channels, x, kernel_size=3, padding=1),
nn.BatchNorm2d(x),
nn.ReLU(inplace=True)]
in_channels = x
layers += [nn.AvgPool2d(kernel_size=1, stride=1)]
return nn.Sequential(*layers)
net4 = VGG('VGG16')
mlps=[net4.to(device)] # 使用 VGG16
optimizer=torch.optim.Adam([{"params":mlp.parameters()} for mlp in mlps],lr=LR)
loss_function=nn.CrossEntropyLoss()
for ep in range(EPOCHES):
for img,label in trainloader:
img,label=img.to(device),label.to(device)
optimizer.zero_grad()#10个网络清除梯度
for mlp in mlps:
mlp.train()
out=mlp(img)
loss=loss_function(out,label)
loss.backward()#网络们获得梯度
optimizer.step()
pre=[]
vote_correct=0
mlps_correct=[0 for i in range(len(mlps))]
for img,label in testloader:
img,label=img.to(device),label.to(device)
for i, mlp in enumerate( mlps):
mlp.eval()
out=mlp(img)
_,prediction=torch.max(out,1) #按行取最大值
pre_num=prediction.cpu().numpy()
mlps_correct[i]+=(pre_num==label.cpu().numpy()).sum()
pre.append(pre_num)
arr=np.array(pre)
pre.clear()
result=[Counter(arr[:,i]).most_common(1)[0][0] for i in range(BATCHSIZE)]
vote_correct+=(result == label.cpu().numpy()).sum()
#print("epoch:" + str(ep)+"集成模型的正确率"+str(vote_correct/len(testloader)))
for idx, coreect in enumerate( mlps_correct):
print("VGG16模型迭代"+str(ep)+"次的正确率为:"+str(coreect/len(testloader)))
之间视觉处理中的卷积神经网络利用卷积核的方式来共享参数,使得参数量大大降低的同时还可以利用位置信息,但是其输入大小时固定的。但是对于语言处理,语音识别等方面,每句话的长度是不一样的,且一句话的前后是有关系的,里斯这样的数据还有语音数据,翻译的语句等,这样有先后顺序的数据称为序列数据。
对于序列数据可用使用循环神经网络(RNN),就很适合处理序列数据,RNN 已经成功用于自然语言处理,语音识别,图片标注,机器翻译等时序问题了。
输入层,隐藏层,输出层还有 循环层。将神经元之间相互关联。U,V,权重矩阵,W 是状态到隐含层的权重矩阵,s 为状态, 这就是一个经典的Elman循环神经网络,其中w , u ,v 共享参数保存不变,再细化隐藏层:
加速输入 x 为 n 维向量,隐含层神经元有 m 个,输出层神经元有 r 个,则U 的大小维 n * m 维,W 是上一次的 a^t-1 为 这一次输入的权重矩阵,大小为 M * M ,V 是输出层矩阵,大小 M *r维。
网络的每一步不一定要有输出,比如预测一个句子的情感时,可能仅关注最后的输出,而不是每个词的情感。而且不一定每一步都需要输入。循环神经网络最大的特点就是隐层状态,可以捕获一个序列的一些信息。
循环神经网络可以像卷积神经网络一样,除了可以横向扩展(增加时间长度或序列长度)也可以纵向扩展成多层循环神经网络。
import numpy as np
X = [1,2]
state = [0.0, 0.0] # 初始状态
w_cell_state = np.asarray([[0.1, 0.2], [0.3, 0.4],[0.5, 0.6]])
b_cell = np.asarray([0.1, -0.1])
w_output = np.asarray([[1.0], [2.0]]) # 权重矩阵
b_output = 0.1
for i in range(len(X)):
state=np.append(state,X[i]) # 转成矩阵操作
before_activation = np.dot(state, w_cell_state) + b_cell
state = np.tanh(before_activation)
final_output = np.dot(state, w_output) + b_output
print("状态值_%i: "%i, state)
print("输出值_%i: "%i, final_output)
>>>
状态值_0: [0.53704957 0.46211716]
输出值_0: [1.56128388]
状态值_1: [0.85973818 0.88366641]
输出值_1: [2.72707101]
循环神经网络的反向传播训练算法称为随时间反向传播(BPTT)算法,基本原理和反向传播算法一样,只是BP 时按照层进行反向, BPTT 是按照时间 t 进行反向。
文档,一个计数器工具提供快速方便的计数
是字典的子类,元素是字典的键,值是计数的值。没有记录就是0 .
>>> c=Counter('qiangqiang')
>>> c
Counter({'q': 2, 'i': 2, 'a': 2, 'n': 2, 'g': 2})
>>> c=Counter({'q':2,'b':4})
>>> c
Counter({'b': 4, 'q': 2})
>>> c['c']
0
>>> c
Counter({'b': 4, 'q': 2})
>>> sorted(c.elements()) # 返回一个迭代器
['b', 'b', 'b', 'b', 'q', 'q']
>>> c = Counter(a=4, b=2, c=0, d=-2)
>>> d = Counter(a=1, b=2, c=3, d=4)
>>> c.subtract(d) # 减法
>>> c
Counter({'a': 3, 'b': 0, 'c': -3, 'd': -6})
>>> Counter('abracadabra').most_common(3) # 排序后选出最高的 n 个
[('a', 5), ('b', 2), ('r', 2)]
# 常用案例
sum(c.values()) # total of all counts
c.clear() # reset all counts
list(c) # list unique elements
set(c) # convert to a set
dict(c) # convert to a regular dictionary
c.items() # convert to a list of (elem, cnt) pairs
Counter(dict(list_of_pairs)) # convert from a list of (elem, cnt) pairs
c.most_common()[:-n-1:-1] # n least common elements
+c # remove zero and negative counts