- 【机器学习 & 深度学习】开发工具Anaconda的安装与使用
为梦而生~
机器学习python实战机器学习深度学习pythoncondapycharm人工智能
个人主页:为梦而生~关注我一起学习吧!专栏:机器学习:相对完整的机器学习基础教学!机器学习python实战:用python带你感受真实的机器学习深度学习:现代人工智能的主流技术介绍往期推荐:【机器学习&深度学习】神经网络简述【机器学习&深度学习】卷积神经网络学习笔记【Python基础&机器学习】Python环境搭建(适合新手阅读的超详细教程)文章目录前言安装Anaconda关于Anaconda的介
- 吴恩达卷积神经网络学习笔记(六)|CSDN创作打卡
墨倾许
深度学习神经网络计算机视觉
3.2特征点检测神经网络可以通过输出图片上特征点的(x,y)坐标,来实现对目标特征的识别。我们来看几个例子,假设你正在构建一个人脸识别应用,出于某种原因,你希望算法可以给出眼角的具体位置,眼角坐标为(x,y),你可以让神经网络的最后一层,多出两个数字lx和ly,作为眼角的坐标值.如果你想知道两只眼睛的4个眼角的具体位置,那么从左到右依次用4个特征点来表示这4个眼角,对神经网络稍微做些修改,输出第1
- 吴恩达卷积神经网络学习笔记(二)
墨倾许
cnn深度学习机器学习
一.卷积神经网络(一)1.6三维卷积3指的是颜色通道(RGB)6*6*3分别对应宽*高*通道的数目滤波器也有相对应的3*3*3,由此得到一个4*4的输出。对三维图像进行卷积时,卷积核的通道数要与三维图像的通道数相等。当我们想对图像的多个边缘特征进行检测时,我们可以使用多个卷积核,这样卷积后生成图像的通道数为使用的卷积核的个数。对于三维卷积具体运算的实例如下:如果使用的是下图3*3*3的卷积核,则一
- [2020-01-13]神经网络学习笔记-梯度验证&参数初始化
wheatfox
看了斯坦福的机器学习视频,讲到神经网络的梯度验证以及参数初始化的部分,记录一下。1.梯度验证有时候训练时,梯度也确实是在下降,但是可能并不是沿着一个比较好的方向,结果导致最后的停止点不是停在相对最优的地方。这时候可以采用梯度验证,即利用某点处的近似理论梯度值来和实际梯度值对比。处的近似理论梯度值:2.参数初始化如果参数初始化为0或者1等常数的话,那么每一层的每个神经元的输出值都会相同(不管迭代多少
- Python深度学习入门 - - 卷积神经网络学习笔记
szu_ljm
深度学习pythoncnn
文章目录一、卷积神经网络简介二、卷积神经网络的数学原理1、卷积层2、池化层3、感受野三、Python实战卷积神经网络1、LetNet-5网络2、Resnet残差网络3、VGGNet迁移学习总结一、卷积神经网络简介卷积神经网络(ConvolutionalNeuralNetworks,简称CNN)是一种具有局部连接、权值共享等特点的深层前馈神经网络(FeedforwardNeuralNetworks)
- Python深度学习入门 - - 人工神经网络学习笔记
szu_ljm
python深度学习学习
文章目录前言一、神经网络原理1、输入层2、全连接层3、激活函数4、损失函数5、前向传播6、反向传播二、Python实战神经网络1.权重初始化技巧2.梯度问题技巧3.模型泛化技巧总结前言如果说机器学习是人工智能的皇冠,深度学习就是这顶皇冠上的明珠,深度学习的出现为人工智能领域的发展拉开了新的序幕。与常见的机器学习模型不同的是,深度学习的数据量更大,特征参数更多,但更重要的是深度学习不需要人为准备特征
- 深度学习神经网络学习笔记-多模态方向-12-DBpedia: A Nucleus for a Web of Open Data
丰。。
多模态神经网络论文研读神经网络神经网络学习笔记多模态人工智能
摘要DBpedia是一个社区努力从维基百科中提取结构化信息,并使这些信息在网络上可用。DBpedia允许您对来自维基百科的数据集提出复杂的查询,并将网络上的其他数据集链接到维基百科数据。我们描述了DBpedia数据集的提取,以及产生的信息如何在网络上发布,供人类和机器消费。我们描述了来自DBpedia社区的一些新兴应用,并展示了网站作者如何在他们的网站内促进DBpedia内容的发展。最后,我们介绍
- 深度学习神经网络学习笔记-多模态方向-11-Deep Voice: Real-time Neural Text-to-Speech
丰。。
多模态神经网络论文研读神经网络深度学习神经网络学习多模态
摘要本文提出DeepVoice,一种完全由深度神经网络构建的生产质量文本到语音系统。DeepVoice为真正的端到端神经语音合成奠定了基础。该系统由五个主要的构建模块组成:用于定位音素边界的分割模型、字素到音素的转换模型、音素时长预测模型、基频预测模型和音频合成模型。对于分割模型,我们提出了一种使用连接时序分类(CTC)损失的深度神经网络执行音素边界检测的新方法。对于音频合成模型,我们实现了Wav
- 深度学习神经网络学习笔记-自然语言处理方向-论文研读-情感分析/文本分类-textcnn
丰。。
深度学习神经网络-NLP方向神经网络论文研读神经网络自然语言处理深度学习人工智能神经网络语言模型
本文目录概念引入摘要大意TextCNN模型的结构正则化手段该模型的超参数研究成果概念引入逻辑回归线性回归时间序列分析神经网络self-attention与softmax的推导word2evcglove摘要大意在使用简单的CNN模型在预训练词向量的基础上进行微调就可以在文本分类任务上就能得到很好的结果。通过对词向量进行微调而获得的任务指向的词向量就能得到更好的结果。同时也提出了一种即使用静态预训练词
- CNN卷积神经网络学习笔记(特征提取)
sinounuo
cnn学习笔记
一、CNN卷积神经网络可以干的事情:检测任务分类和检索:超分辨率重构:字体识别、人脸识别、医学任务、自动驾驶任务等总结:特征提取相关二、卷积神经网络的整体架构:(1)输入层H*W*C的三维数据(2)卷积层(提取特征)权重参数矩阵filterW当前区域数据:将输入数据划分成小区域,对每个区域进行特征提取滑动窗口步长:卷积核尺寸:H*W,一般是3*3边缘填充:边缘的点被提取次数少,所以给边界paddi
- 深度学习神经网络学习笔记-论文研读-transformer及代码复现参考
丰。。
神经网络论文研读机器学习笔记神经网络深度学习神经网络学习transformer
摘要优势序列转导模型基于复杂的循环或包括一个编码器和一个解码器的卷积神经网络。最好的表现良好的模型还通过attention连接编码器和解码器机制。我们提出了一种新的简单的网络架构,Transformer,完全基于注意力机制,省去了递归和卷积完全。在两个机器翻译任务上的实验表明,这些模型可以质量优越,同时具有更强的并行性和显著的要求训练时间更少。我们的模型在WMT2014英语-上达到28.4BLEU
- 深度学习神经网络学习笔记-多模态方向-13- Multimodal machine learning: A survey and taxonomy
丰。。
多模态神经网络论文研读神经网络机器学习深度学习神经网络多模态
本文为简单机翻,参考学习用1多模态机器学习:综述与分类TadasBaltruˇsaitis,ChaitanyaAhuja,和Louis-PhilippeMorency抽象——我们对世界的体验是多模态的——我们看到物体,听到声音,感觉到纹理,闻到气味,尝到味道。模态是指某件事情发生或体验的方式,当一个研究问题包含多个这样的模态时,它就被称为多模态。为了让人工智能在理解我们周围的世界方面取得进展,它需
- 神经网络:损失函数
nightwish夜愿
神经网络学习笔记-损失函数的定义和微分证明http://www.cnblogs.com/steven-yang/p/6357775.html
- d2l卷积神经网络学习笔记(2)——浅谈残差网络ResNet
Tsparkle
学习之路学习深度学习cnn
1.关于残差网络残差网络从实现原理上并不复杂,但是关于具体的原理一开始比较难理解,找了一些资料也有了一点想法。(1).我们要解决什么问题首先,网络的性能并不是随网络层数加深而上升的,这是很符合直觉的,毕竟有过拟合的先例。但是实际上,即使网络还处于欠拟合,更深层次的网络也会导致性能的下降,也就是网络退化,要理清这一现象,需要先引入一个概念,恒等映射。恒等映射简单的讲就是f(x)=x,在我们预期中,一
- bp神经网络matlab实例_人工神经网络学习笔记2——MATLAB神经网络工具箱
weixin_39853210
bp神经网络matlab实例matlabbp神经网络工具箱matlab高斯过程工具箱matlab神经网络工具箱人工势场法matlab讲解
神经网络理论的初学者可以利用MATLAB自带的神经网络工具箱来理解ANN算法。神经网络工具箱模型包括如下内容:·感知器·线性网络·BP网络·径向基函数网络·竞争型神经网络·自组织网络和学习向量量化网络·反馈网络神经网络工具箱的使用在命令行窗口输入nnstart,可以打开MATLAB提供的神经网络图形用户界面,如图1所示:图1神经网络图形用户界面再次点击该界面的‘Fittingapp’按钮,打开神经
- 神经网络学习笔记(三)——长短时记忆(LSTM)网络
shuyitingting
机器学习
LSTM网络是循环神经网络的一种特殊类型,它可以学习长期以来的信息,它是一种拥有三个“门”结构的特殊网络结构。1.LSTM网络结构原始RNN的隐藏层只有一个状态h,如图1(a),它对于短期的输入非常敏感。LSTM网络增加一个状态c,让它保存长期的状态,如图1(b)。图1新增状态c,称为单元状态。把图1(b)按照时间维度展开,如图2所示。图2由上图可以看出:在t时刻,LSTM网络的输入有三个,即当前
- 吴恩达卷积神经网络学习笔记(一)
星_阳
深度学习cnn计算机视觉
一.卷积神经网络(一)1.1计算机视觉图片分类和图片识别,目标检测,图片风格迁移特征向量的维度卷积神经网络一般应用于计算机视觉领域,由于有的时候图片的像素点很多,导致神经网络输入特征值的维数很多。1.2边缘检测示例弄清一张照片中的物体,利用电脑进行去识别,垂直边缘检测,水平边缘检测。如下图所示,原图是一个661的矩阵,卷积核是一个331的矩阵,经过卷积后得到一个441的矩阵。(为了检测图像中的垂直
- 神经网络学习笔记(二)——循环神经网络RNN
Storm*Rage
循环神经网络RNN文章目录循环神经网络RNN一、概述二、背景三、RNN原理3.1模型结构3.2前向传播3.3反向传播BPTT(back-propagationthroughtime)3.4RNN的分类3.5RNN的改进双向RNN深度RNN四、RNN的简单使用五、总结一、概述 循环神经网络(Recurrentneuralnetwork,RNN)是一类以序列(sequence)数据为输入,在序列的演
- 动手学深度学习(现代卷积神经网络学习笔记)
遥感人遥感魂
动手学深度学习深度学习cnn学习
现代卷积神经网络之前的传统的机器学习方式,是传入人工制作选取的图像特征作为输入,训练后送入分类器中,如今是原始图像(可能裁剪)输入网络进行训练。计算机视觉研究人员相信,从对最终模型精度的影响来说,更大或更干净的数据集、或是稍微改进的特征提取,比任何学习算法带来的进步要大得多。大纲主要有以下结构,学习这些结构,包含的思想,有助于以后自己网络模型的搭建AlexNet。它是第一个在大规模视觉竞赛中击败传
- 神经网络学习笔记9——循环神经网络中的LSTM模型和GRU模型
RanceGru
深度学习rnnlstm神经网络
系列文章目录LSTM视频参考GRU视频参考文章目录系列文章目录前言一、LSTM模型结构二、GRU模型结构三、GRU与LSTM的比较前言循环神经网络(RecurrentNeuralNetwork,RNN)是一种用于处理序列数据的神经网络。相比一般的神经网络来说,他能够处理序列变化的数据。比如某个单词的意思会因为上文提到的内容不同而有不同的含义,RNN就能够很好地解决这类问题。LSTM是RNN的一种,
- 神经网络学习笔记(三)——长短期记忆网络LSTM
Storm*Rage
长短期记忆网络LSTM文章目录长短期记忆网络LSTM一、概述二、背景三、LSTM原理3.1模型结构3.2前向传播3.3反向传播3.4LSTM的变体3.4.1PeepholeConnection3.4.2Coupled四、LSTM的简单使用五、总结一、概述 长短期记忆网络——通常被称为LSTM,是一种特殊的RNN,能够学习长期依赖性。由Hochreiter和Schmidhuber(1997)提出,
- 小白的神经网络学习
summer_bugs
神经网络机器学习tensorflow
小白的神经网络学习笔记文章目录小白的神经网络学习笔记一.环境配置二.感知器(Perceptron)单层感知器多层感知器(MLP,MultilayerPerceptron)Keras实现三.逻辑回归与交叉熵关于sparse_categorical_crossentropy&categorical_crossentropy关于独热编码(one-hotkey)在Python中的应用Keras实现四.tf
- 经典神经网络学习笔记之LeNet(附带代码)
我很懒但我很软乎
深度学习lenet
本文是对经典论文“Gradient-BasedLearningAppliedtoDocumentRecognition”的阅读笔记之一,主要介绍LeNet的结构以及参数个数的计算,结合“DeepLearningforComputerVisionwithPythonstarterbundle”所介绍的原理和实验所写。笔者才疏学浅,还望指教。一、理论部分LeNet首次出现是在1998年的论文中,基于梯
- 神经网络学习笔记——鸢尾花分类
XL_0502
神经网络学习笔记神经网络tensorflow
TensorFlow笔记——鸢尾花分类代码笔记记录实验流程和代码功能,附上关于所涉及到的tensorflow库中函数的解释实验流程数据集读入数据集乱序生成训练集和测试集(即x_train/y_train)数据类型转换配成(输入特征,标签)对,每次读入一小撮(batch)搭建网络定义神经网路中所有可训练参数参数优化嵌套循环迭代,with结构更新参数,显示当前loss测试效果计算当前参数前向传播后的准
- 神经网络学习笔记(3)——梯度下降公式讲解与反向传播算法
野指针小李
数学深度学习神经网络深度学习神经网络算法
结合上上两篇文章的叙述,这一篇文章主要讲解梯度的公式的推导,笔记来自于3B1B的视频,链接会放在最后。同样的,这一篇文章依旧没有代码。上篇文章中稍稍写漏了点东西,就是说在梯度下降过程中,步长是与该点的斜率有关,如果无关的话,那么如果步长太大,是不是就从坑中心滚过去了呀?比如这样:下面开始正文。每层只有一个神经元根据上篇文章的内容,梯度会有正有负,代表的意思就是这个点该如何移动。而每一项的相对大小告
- 神经网络学习笔记8——FPN理论及代码理解
RanceGru
深度学习神经网络学习计算机视觉
系列文章目录目标分割相关的RPNB站讲解文章目录系列文章目录前言一、金字塔结构图(a)图(b)图(c)图(d)二、FPN结构1、局部2、整体代码前言特征金字塔(FeaturePyramidNetworks,FPN)的基本思想是通过构造一系列不同尺度的图像或特征图进行模型训练和测试,目的是提升检测算法对于不同尺寸检测目标的鲁棒性。但如果直接根据原始的定义进行FPN计算,会带来大额的计算开销。为了降低
- 神经网络学习笔记4——自动编码器(含稀疏,堆叠)(更新中)
奥利奥好吃呀
学习深度学习神经网络
目录配套讲解视频1.程序和数据集2.自动编码器2.1自编码器原理2.2代码实现3.堆叠式自编码器4.稀疏自编码器4.1稀疏编码4.2.稀疏自编码器配套讲解视频建议配合视频阅读博文10分钟学会自动编码器从原理到编程实现_哔哩哔哩_bilibili10分钟学会自动编码器从原理到编程实现1.程序和数据集链接:https://pan.baidu.com/s/1aSNq94BJuKsiKO5gNGF29Q提
- 神经网络学习笔记2.2 ——用Matlab写一个简单的卷积神将网络图像分类器
奥利奥好吃呀
matlabcnn分类深度学习神经网络
配套视频讲解10分钟学会matlab实现cnn图像分类_哔哩哔哩_bilibili10分钟学会matlab实现cnn图像分类整体代码链接:https://pan.baidu.com/s/1btnY-jZXMK9oj3ZQxDvz8g提取码:k4v8可以打开代码,我来一步一步为你讲解,每步的含义,还有你该如何使用!目录1.为了便于理解,这里说一些基本概念,会的直接跳过程序在后面1.1通道数1.2全连
- 图卷积神经网络学习笔记
四十不嚯
机器学习神经网络gcn机器学习深度学习
图卷积神经网络学习笔记前言整体看待从卷积、CNN、GCN的关系来切入GNN与GCN的关系图的特征图的特征分析特征提取方式spectraldomainGCN的特征提取方式从拉普拉斯矩阵的特征分解开始Graph上的傅里叶变换Graph上的卷积定理第一类GCN卷积核第二类GCN卷积核第三类GCN卷积核(Chebyshev)后记前言这篇文章是作者在初次接触学习GNN/GCN的过程中为了方便理解而记录下的个
- 深度学习(二):深度学习与神经网络学习笔记(手记)
夜风里唱
深度学习深度学习
下面的照片顺序可能与当时学习记录的顺序不一致。1.感知机模型,CNN模型的前身:2.sigmoid激活函数:3.神经网络的前向传播与反向传播计算过程例子:4.神经网络的前向传播与反向传播计算过程例子(续):5.Relu、Softmax,Sigmod激活函数,mnist、cifar10CNN模型,以及Keras开发平台模型类型:6.BatchNorm的概念以及安装Tensorflow的一些流程:7.
- 关于旗正规则引擎规则中的上传和下载问题
何必如此
文件下载压缩jsp文件上传
文件的上传下载都是数据流的输入输出,大致流程都是一样的。
一、文件打包下载
1.文件写入压缩包
string mainPath="D:\upload\"; 下载路径
string tmpfileName=jar.zip; &n
- 【Spark九十九】Spark Streaming的batch interval时间内的数据流转源码分析
bit1129
Stream
以如下代码为例(SocketInputDStream):
Spark Streaming从Socket读取数据的代码是在SocketReceiver的receive方法中,撇开异常情况不谈(Receiver有重连机制,restart方法,默认情况下在Receiver挂了之后,间隔两秒钟重新建立Socket连接),读取到的数据通过调用store(textRead)方法进行存储。数据
- spark master web ui 端口8080被占用解决方法
daizj
8080端口占用sparkmaster web ui
spark master web ui 默认端口为8080,当系统有其它程序也在使用该接口时,启动master时也不会报错,spark自己会改用其它端口,自动端口号加1,但为了可以控制到指定的端口,我们可以自行设置,修改方法:
1、cd SPARK_HOME/sbin
2、vi start-master.sh
3、定位到下面部分
- oracle_执行计划_谓词信息和数据获取
周凡杨
oracle执行计划
oracle_执行计划_谓词信息和数据获取(上)
一:简要说明
在查看执行计划的信息中,经常会看到两个谓词filter和access,它们的区别是什么,理解了这两个词对我们解读Oracle的执行计划信息会有所帮助。
简单说,执行计划如果显示是access,就表示这个谓词条件的值将会影响数据的访问路径(表还是索引),而filter表示谓词条件的值并不会影响数据访问路径,只起到
- spring中datasource配置
g21121
dataSource
datasource配置有很多种,我介绍的一种是采用c3p0的,它的百科地址是:
http://baike.baidu.com/view/920062.htm
<!-- spring加载资源文件 -->
<bean name="propertiesConfig"
class="org.springframework.b
- web报表工具FineReport使用中遇到的常见报错及解决办法(三)
老A不折腾
finereportFAQ报表软件
这里写点抛砖引玉,希望大家能把自己整理的问题及解决方法晾出来,Mark一下,利人利己。
出现问题先搜一下文档上有没有,再看看度娘有没有,再看看论坛有没有。有报错要看日志。下面简单罗列下常见的问题,大多文档上都有提到的。
1、repeated column width is largerthan paper width:
这个看这段话应该是很好理解的。比如做的模板页面宽度只能放
- mysql 用户管理
墙头上一根草
linuxmysqluser
1.新建用户 //登录MYSQL@>mysql -u root -p@>密码//创建用户mysql> insert into mysql.user(Host,User,Password) values(‘localhost’,'jeecn’,password(‘jeecn’));//刷新系统权限表mysql>flush privileges;这样就创建了一个名为:
- 关于使用Spring导致c3p0数据库死锁问题
aijuans
springSpring 入门Spring 实例Spring3Spring 教程
这个问题我实在是为整个 springsource 的员工蒙羞
如果大家使用 spring 控制事务,使用 Open Session In View 模式,
com.mchange.v2.resourcepool.TimeoutException: A client timed out while waiting to acquire a resource from com.mchange.
- 百度词库联想
annan211
百度
<!DOCTYPE html>
<html>
<head>
<meta http-equiv="Content-Type" content="text/html; charset=UTF-8">
<title>RunJS</title&g
- int数据与byte之间的相互转换实现代码
百合不是茶
位移int转bytebyte转int基本数据类型的实现
在BMP文件和文件压缩时需要用到的int与byte转换,现将理解的贴出来;
主要是要理解;位移等概念 http://baihe747.iteye.com/blog/2078029
int转byte;
byte转int;
/**
* 字节转成int,int转成字节
* @author Administrator
*
- 简单模拟实现数据库连接池
bijian1013
javathreadjava多线程简单模拟实现数据库连接池
简单模拟实现数据库连接池
实例1:
package com.bijian.thread;
public class DB {
//private static final int MAX_COUNT = 10;
private static final DB instance = new DB();
private int count = 0;
private i
- 一种基于Weblogic容器的鉴权设计
bijian1013
javaweblogic
服务器对请求的鉴权可以在请求头中加Authorization之类的key,将用户名、密码保存到此key对应的value中,当然对于用户名、密码这种高机密的信息,应该对其进行加砂加密等,最简单的方法如下:
String vuser_id = "weblogic";
String vuse
- 【RPC框架Hessian二】Hessian 对象序列化和反序列化
bit1129
hessian
任何一个对象从一个JVM传输到另一个JVM,都要经过序列化为二进制数据(或者字符串等其他格式,比如JSON),然后在反序列化为Java对象,这最后都是通过二进制的数据在不同的JVM之间传输(一般是通过Socket和二进制的数据传输),本文定义一个比较符合工作中。
1. 定义三个POJO
Person类
package com.tom.hes
- 【Hadoop十四】Hadoop提供的脚本的功能
bit1129
hadoop
1. hadoop-daemon.sh
1.1 启动HDFS
./hadoop-daemon.sh start namenode
./hadoop-daemon.sh start datanode
通过这种逐步启动的方式,比start-all.sh方式少了一个SecondaryNameNode进程,这不影响Hadoop的使用,其实在 Hadoop2.0中,SecondaryNa
- 中国互联网走在“灰度”上
ronin47
管理 灰度
中国互联网走在“灰度”上(转)
文/孕峰
第一次听说灰度这个词,是任正非说新型管理者所需要的素质。第二次听说是来自马化腾。似乎其他人包括马云也用不同的语言说过类似的意思。
灰度这个词所包含的意义和视野是广远的。要理解这个词,可能同样要用“灰度”的心态。灰度的反面,是规规矩矩,清清楚楚,泾渭分明,严谨条理,是决不妥协,不转弯,认死理。黑白分明不是灰度,像彩虹那样
- java-51-输入一个矩阵,按照从外向里以顺时针的顺序依次打印出每一个数字。
bylijinnan
java
public class PrintMatrixClockwisely {
/**
* Q51.输入一个矩阵,按照从外向里以顺时针的顺序依次打印出每一个数字。
例如:如果输入如下矩阵:
1 2 3 4
5 6 7 8
9
- mongoDB 用户管理
开窍的石头
mongoDB用户管理
1:添加用户
第一次设置用户需要进入admin数据库下设置超级用户(use admin)
db.addUsr({user:'useName',pwd:'111111',roles:[readWrite,dbAdmin]});
第一个参数用户的名字
第二个参数
- [游戏与生活]玩暗黑破坏神3的一些问题
comsci
生活
暗黑破坏神3是有史以来最让人激动的游戏。。。。但是有几个问题需要我们注意
玩这个游戏的时间,每天不要超过一个小时,且每次玩游戏最好在白天
结束游戏之后,最好在太阳下面来晒一下身上的暗黑气息,让自己恢复人的生气
&nb
- java 二维数组如何存入数据库
cuiyadll
java
using System;
using System.Linq;
using System.Text;
using System.Windows.Forms;
using System.Xml;
using System.Xml.Serialization;
using System.IO;
namespace WindowsFormsApplication1
{
- 本地事务和全局事务Local Transaction and Global Transaction(JTA)
darrenzhu
javaspringlocalglobaltransaction
Configuring Spring and JTA without full Java EE
http://spring.io/blog/2011/08/15/configuring-spring-and-jta-without-full-java-ee/
Spring doc -Transaction Management
http://docs.spring.io/spri
- Linux命令之alias - 设置命令的别名,让 Linux 命令更简练
dcj3sjt126com
linuxalias
用途说明
设置命令的别名。在linux系统中如果命令太长又不符合用户的习惯,那么我们可以为它指定一个别名。虽然可以为命令建立“链接”解决长文件名的问 题,但对于带命令行参数的命令,链接就无能为力了。而指定别名则可以解决此类所有问题【1】。常用别名来简化ssh登录【见示例三】,使长命令变短,使常 用的长命令行变短,强制执行命令时询问等。
常用参数
格式:alias
格式:ali
- yii2 restful web服务[格式响应]
dcj3sjt126com
PHPyii2
响应格式
当处理一个 RESTful API 请求时, 一个应用程序通常需要如下步骤 来处理响应格式:
确定可能影响响应格式的各种因素, 例如媒介类型, 语言, 版本, 等等。 这个过程也被称为 content negotiation。
资源对象转换为数组, 如在 Resources 部分中所描述的。 通过 [[yii\rest\Serializer]]
- MongoDB索引调优(2)——[十]
eksliang
mongodbMongoDB索引优化
转载请出自出处:http://eksliang.iteye.com/blog/2178555 一、概述
上一篇文档中也说明了,MongoDB的索引几乎与关系型数据库的索引一模一样,优化关系型数据库的技巧通用适合MongoDB,所有这里只讲MongoDB需要注意的地方 二、索引内嵌文档
可以在嵌套文档的键上建立索引,方式与正常
- 当滑动到顶部和底部时,实现Item的分离效果的ListView
gundumw100
android
拉动ListView,Item之间的间距会变大,释放后恢复原样;
package cn.tangdada.tangbang.widget;
import android.annotation.TargetApi;
import android.content.Context;
import android.content.res.TypedArray;
import andr
- 程序员用HTML5制作的爱心树表白动画
ini
JavaScriptjqueryWebhtml5css
体验效果:http://keleyi.com/keleyi/phtml/html5/31.htmHTML代码如下:
<!DOCTYPE html>
<html xmlns="http://www.w3.org/1999/xhtml"><head><meta charset="UTF-8" >
<ti
- 预装windows 8 系统GPT模式的ThinkPad T440改装64位 windows 7旗舰版
kakajw
ThinkPad预装改装windows 7windows 8
该教程具有普遍参考性,特别适用于联想的机器,其他品牌机器的处理过程也大同小异。
该教程是个人多次尝试和总结的结果,实用性强,推荐给需要的人!
缘由
小弟最近入手笔记本ThinkPad T440,但是特别不能习惯笔记本出厂预装的Windows 8系统,而且厂商自作聪明地预装了一堆没用的应用软件,消耗不少的系统资源(本本的内存为4G,系统启动完成时,物理内存占用比
- Nginx学习笔记
mcj8089
nginx
一、安装nginx 1、在nginx官方网站下载一个包,下载地址是:
http://nginx.org/download/nginx-1.4.2.tar.gz
2、WinSCP(ftp上传工
- mongodb 聚合查询每天论坛链接点击次数
qiaolevip
每天进步一点点学习永无止境mongodb纵观千象
/* 18 */
{
"_id" : ObjectId("5596414cbe4d73a327e50274"),
"msgType" : "text",
"sendTime" : ISODate("2015-07-03T08:01:16.000Z"
- java术语(PO/POJO/VO/BO/DAO/DTO)
Luob.
DAOPOJODTOpoVO BO
PO(persistant object) 持久对象
在o/r 映射的时候出现的概念,如果没有o/r映射,就没有这个概念存在了.通常对应数据模型(数据库),本身还有部分业务逻辑的处理.可以看成是与数据库中的表相映射的java对象.最简单的PO就是对应数据库中某个表中的一条记录,多个记录可以用PO的集合.PO中应该不包含任何对数据库的操作.
VO(value object) 值对象
通
- 算法复杂度
Wuaner
Algorithm
Time Complexity & Big-O:
http://stackoverflow.com/questions/487258/plain-english-explanation-of-big-o
http://bigocheatsheet.com/
http://www.sitepoint.com/time-complexity-algorithms/