Stochastic Calculus A Practical Introduction

Notes for the following book:
Richard Durrett, Stochastic Calculus A Practical Introduction, CRC Press 2000.

1. Brownian Motion

1.1 Definition and Construction

Exercise 1.2. Show by considering increments instead of 3 that if then with probability 1, Brownian paths are not Holder continuous with exponent at any point of .
Answer: Let For let
\begin{align} & Y_{k,n} = \max\left\{ \left| B\left( \frac{k+j}{n}\right) - B\left(\frac{k+j-1}{n}\right) \right| : j=0,1,\cdots, m-1 \right\} \\ & G_n = \left\{ \text{at least one }Y_{k,n} \leq 2C \left( \frac{2m-1}{n} \right)^{\gamma} \right\}. \end{align}
The claim still can be proved when . Specifically, we have
\begin{align} & \left| B( \frac{n-(m-1)}{n} ) - B\left( \frac{n-m}{n} \right)\right| \\ & \leq \left| B\left( \frac{n-(m-1)}{n} \right) - B_1 \right| + \left| B\left( \frac{n-m}{n} \right) - B_1 \right| \\ & \leq C\left\{ \left(\frac{m-1}{n} \right)^{\gamma} + \left( \frac{m}{n} \right)^{\gamma} \right\} \\ & \leq 2C \left( \frac{2m-1}{n} \right)^{\gamma}. \end{align}
Using and the scaling relation as in the book gives
\begin{align} P(A_n) \leq P(G_n) & \leq (n-m) P\left( |B_{1/n}| \leq 2C \left(\frac{2m-1}{n} \right)^{\gamma} \right)^{m} \\ & \leq n\left\{ \frac{2C(2m-1)^{\gamma}}{n^{\gamma-1/2}} \right\}^{m} \end{align}.
To ensure the right hand side goes to zero as , we need

which implies . Obviously, the proof is completed.


2020

你可能感兴趣的:(Stochastic Calculus A Practical Introduction)