- 每天五分钟玩转深度学习PyTorch:模型参数优化器torch.optim
幻风_huanfeng
深度学习框架pytorch深度学习pytorch人工智能神经网络机器学习优化算法
本文重点在机器学习或者深度学习中,我们需要通过修改参数使得损失函数最小化(或最大化),优化算法就是一种调整模型参数更新的策略。在pytorch中定义了优化器optim,我们可以使用它调用封装好的优化算法,然后传递给它神经网络模型参数,就可以对模型进行优化。本文是学习第6步(优化器),参考链接pytorch的学习路线随机梯度下降算法在深度学习和机器学习中,梯度下降算法是最常用的参数更新方法,它的公式
- 如何在Java中实现高效的分布式梯度下降算法
省赚客app开发者
java分布式算法
如何在Java中实现高效的分布式梯度下降算法大家好,我是微赚淘客系统3.0的小编,是个冬天不穿秋裤,天冷也要风度的程序猿!在本文中,我们将探讨如何在Java中实现高效的分布式梯度下降算法。分布式梯度下降(DistributedGradientDescent)是一种常用于训练大规模机器学习模型的优化方法,特别是在处理大规模数据集时非常有效。本文将介绍如何设计和实现这一算法,以提高训练效率。分布式梯度
- 梯度下降法
小丹丹的梦想后花园
梯度下降法,最通俗易懂的解释。数据分析挖掘与算法1月7日作者:六尺帐篷链接:https://www.jianshu.com/p/c7e642877b0e本文从一个下山场景开始,提出梯度下降算法的基本思想,接着从数学上解释梯度下降算法原理,最后实现一个简单的梯度下降算法实例!梯度下降的场景假设梯度下降法的基本思想可以类比为一个下山的过程。假设这样一个场景:一个人被困在山上,需要从山上下来(i.e.找
- 梯度下降算法(Gradient Descent Algorithm)
海棠未语
算法机器学习人工智能python
目录一、梯度下降算法简述二、不同函数梯度下降算法表示1、一元函数2、二元函数3、任意多元函数三、梯度计算四、常见的梯度下降法1、批量梯度下降算法(BatchGradientDescent)2、随机梯度下降算法(StochasticGradientDescent)3、小批量梯度下降(Mini-batchGradientDescent)4、梯度下降算法注意点与调优5、冲量梯度下降算法(Momentum
- 【机器学习】梯度下降算法
de-feedback
机器学习算法人工智能
梯度下降算法这篇博客更加详细,以下只是我个人的理解梯度下降算法原理讲解——机器学习-CSDN博客梯度下降算法是一种优化算法,通过梯度下降找到函数最小值时的自变量值。其基本思想是沿着梯度方向的反方向更新参数,直到逼近函数的极值或者函数值足够小,或者是到达最大迭代次数。目标函数求目标函数的导数和梯度值沿着梯度方向的反方向更新参数重复直到满足条件以线性回归为例,通过找均方差损失函数最小值,得到最优的权重
- 神经网络深度学习梯度下降算法优化
海棠如醉
人工智能深度学习
【神经网络与深度学习】以最通俗易懂的角度解读[梯度下降法及其优化算法],这一篇就足够(很全很详细)_梯度下降在神经网络中的作用及概念-CSDN博客https://blog.51cto.com/u_15162069/2761936梯度下降数学原理
- matlab实现梯度下降优化算法
孺子牛 for world
matlab算法开发语言
梯度下降(GradientDescent)是一种常用的优化算法,用于寻找函数的局部最小值。在机器学习领域,它常被用来优化模型的参数,比如线性回归、逻辑回归以及神经网络等模型的权重和偏置。以下是一个简单的MATLAB实现梯度下降算法的示例,该示例将用于优化一个简单的二次函数f(x)=ax2+bx+c的最小值点。为了简化问题,我们假设a=1,b=0,c=1,即函数为f(x)=x2+1,其最小值点为x=
- 数学基础 -- 梯度下降算法
sz66cm
算法人工智能数学基础
梯度下降算法梯度下降算法(GradientDescent)是一种优化算法,主要用于寻找函数的局部最小值或全局最小值。它广泛应用于机器学习、深度学习以及统计学中,用于最小化损失函数或误差函数。梯度下降的基本概念梯度下降算法通过以下步骤工作:初始化参数:随机初始化模型的参数(如权重和偏差),也可以用特定的策略初始化。计算损失:对当前模型输出和实际目标值计算损失(如均方误差、交叉熵等)。计算梯度:计算损
- python实现梯度下降优化算法
孺子牛 for world
python算法机器学习
梯度下降(GradientDescent)是一种常用的优化算法,用于求解无约束优化问题。在机器学习中,它常被用来更新模型的参数以最小化某个损失函数。以下是一个简单的Python示例,展示如何实现梯度下降算法来优化一个二次函数的参数。假设我们要优化的函数是f(x)=x2,我们希望找到使得f(x)最小的x值。显然,对于这个函数,最小值出现在x=0。首先,我们需要计算f(x)的梯度(导数),即f′(x)
- 机器学习·day4梯度下降
#include<菜鸡>
机器学习机器学习人工智能
参考原文地址:https://github.com/fengdu78/Coursera-ML-AndrewNg-Notes文章目录前言一、梯度下降?二、梯度下降的直观理解梯度下降的线性回归前言梯度下降是一个用来求函数最小值的算法,我们将使用梯度下降算法来求出代价函数J(θ_0,θ_1)的最小值。一、梯度下降?批量梯度下降(batchgradientdescent)算法的公式为:其中a是学习率(le
- 24 优化算法
Unknown To Known
动手学习深度学习算法
目录优化和深度学习深度学习中的挑战局部最小vs全局最小鞍点(saddlepoint)梯度消失小结凸性(convexity)凸集凸函数(convexfunction)凸函数优化凸和非凸例子小结梯度下降(gradientdescent)1、梯度下降算法是最简单的迭代求解算法2、学习率(learningrate)小结随机梯度下降(stochasticgradientdescent)小结小批量随机梯度下降
- 【机器学习】多元线性回归
Mount256
#机器学习机器学习线性回归人工智能
文章目录多元线性回归模型(multipleregressionmodel)损失/代价函数(costfunction)——均方误差(meansquarederror)批量梯度下降算法(batchgradientdescentalgorithm)特征工程(featureengineering)特征缩放(featurescaling)正则化线性回归(regularizationlinearregress
- 深度学习之梯度下降算法
温柔了岁月.c
机器学习算法python深度学习梯度下降算法
梯度下降算法梯度下降算法数学公式结果梯度下降算法存在的问题随机梯度下降算法梯度下降算法数学公式这里案例是用梯度下降算法,来计算y=w*x先计算出梯度,再进行梯度的更新importnumpyasnpimportmatplotlib.pyplotaspltx_data=[1.0,2.0,3.0,4.0]y_data=[2.0,4.0,6.0,8.0]mse_list=[]w_list=[]w=1.0#
- GAN生成对抗性网络
Dirschs
深度学习GAN生成对抗网络人工智能神经网络
一、GAN原理出发点:机器学习中生成模型的问题无监督学习是机器学习和未来人工智能的突破点,生成模型是无监督学习的关键部分特点:不需要MCMC或者变分贝叶斯等复杂的手段,只需要在G和D中对应的多层感知机中运行反向传播或者梯度下降算法模型通常使用神经网络,其拟合能力最好G(Generator):用于捕获数据分布的生成模型(生成图像的网络);接收到随机的噪声z,通过噪声z生成图像。尽可能多地模拟、建模和
- 《零基础实践深度学习》波士顿房价预测任务1.3.3.5 总结
软工菜鸡
《零基础实践深度学习》numpy深度学习人工智能大数据机器学习飞桨百度云
2.5模型保存Numpy提供了save接口,可直接将模型权重数组保存为.npy格式的文件。In[53]np.save('w.npy',net.w)np.save('b.npy',net.b)总结本节我们详细介绍了如何使用Numpy实现梯度下降算法,构建并训练了一个简单的线性模型实现波士顿房价预测,可以总结出,使用神经网络建模房价预测有三个要点:构建网络,初始化参数w和b,定义预测和损失函数的计算方
- 优化梯度下降算法
stoAir
算法机器学习人工智能深度学习神经网络
文章目录OptimizationproblemNormalizinginputsvanishing/explodinggradientsweightinitializegradientcheckNumericalapproximationgradcheckOptimizealgorithmmini-bachgradientmini-batchsizeexponentialweightedavera
- BP神经网络风速预测
MATLAB代码顾问
神经网络人工智能深度学习
BP(Backpropagation)神经网络,也称为反向传播神经网络,是一种非常重要的人工神经网络。它基于梯度下降算法,通过反向传播误差来更新神经网络中的权重和偏差,以达到优化网络和提高预测准确性的目的。BP神经网络主要包括以下几个步骤:前向传播:在这个阶段,输入数据被送入网络,并通过每一层传播,直到输出层。每一层的输出都是下一层的输入。每个神经元的输出都是其权重加权输入的总和,再经过一个活化函
- 优化|复杂度分析——用于凸约束非凸优化问题的光滑化近似点增广拉格朗日算法
运筹OR帷幄
算法机器学习人工智能
1.简介对于无约束的非凸优化问题,算法复杂度的下界为Ω(1/ϵ2)\Omega(1/\epsilon^2)Ω(1/ϵ2);在目标函数光滑时,这个下界可以通过标准梯度下降算法来取到.对于带约束的非凸优化问题,这个下界依旧适用;到这里,我们自然会提出疑问:它是否也能通过某个一阶算法来取到?对此,本文[1]^{[1]}[1]作出了回答.文中介绍了一种简单的一阶算法——光滑化近似点增广拉格朗日方法(Smo
- 【机器学习】单变量线性回归
Mount256
机器学习机器学习线性回归人工智能
文章目录线性回归模型(linearregressionmodel)损失/代价函数(costfunction)——均方误差(meansquarederror)梯度下降算法(gradientdescentalgorithm)参数(parameter)和超参数(hyperparameter)代码实现样例运行结果线性回归模型(linearregressionmodel)线性回归模型:fw,b(x)=wx+
- 多变量梯度下降(Gradient Descent for Multiple Variables)
东京的雨不会淋湿首尔
与单变量线性回归类似,在多变量线性回归中,我们也构建一个代价函数,则这个代价函数是所有建模误差的平方和,即:image.png,其中:image.png我们的目标和单变量线性回归问题中一样,是要找出使得代价函数最小的一系列参数。多变量线性回归的批量梯度下降算法为:image即:image求导数后得到:imageimage.png我们开始随机选择一系列的参数值,计算所有的预测结果后,再给所有的参数一
- 机器学习:Softmax回归(Python)
捕捉一只Diu
机器学习回归python笔记
Softmax回归(多分类)logistic_regression_mulclass.pyimportnumpyasnpimportmatplotlib.pyplotaspltclassLogisticRegression_MulClass:"""逻辑回归,采用梯度下降算法+正则化,交叉熵损失函数,实现多分类,Softmax函数"""def__init__(self,fit_intercept=T
- 神经网络梯度是什么意思,神经网络中梯度下降法
「已注销」
神经网络机器学习深度学习
梯度下降算法是指什么神经网络谷歌人工智能写作项目:小发猫对于非连续目标在深度神经网络的优化过程中哪种梯度下降方法最好还有很多,一步正割算法,拟牛顿算法,量化共轭梯度法,弹性梯度下降法等等rfid。具体可以在MATLAB的help文件训练函数中查看,路径是:NeuralNetworkToolbox>Functions>TrainingFunctions,可以看到各种算法的函数及详细介绍。对于非连续目
- CS229-DAY2:梯度下降(Gradient Descent)
shyayaya
学习一个算法,首先就想了解它的作用。我们使用训练数据让机器去训练,无论结果是什么,我们会得到一个模型(或好或坏),那么梯度下降算法就是用来对这个模型来进行优化的。先来了解几组概念:梯度:在微积分里面,对多元函数的参数求∂偏导数,把求得的各个参数的偏导数以向量的形式写出来,就是梯度。梯度向量代表着函数在那一点变化的快慢,这样我们就能找到最大值/最小值。步长(Learningrate):步长决定了在梯
- [机器学习]LFM梯度下降算法
不知迷踪
机器学习机器学习算法人工智能LFM梯度下降
一.LFM梯度下降算法2.代码实现#0.引入依赖importnumpyasnpimportpandasaspd#1.数据准备#评分矩阵RR=np.array([[4,0,2,0,1],[0,2,3,0,0],[1,0,2,4,0],[5,0,0,3,1],[0,0,1,5,1],[0,3,2,4,1],])#二维数组小技巧:取行数R.shape[0]和len(R),列数R.shape[1]和len
- 机器学习:Logistic回归(Python)
捕捉一只Diu
机器学习python人工智能笔记逻辑回归
Logistic回归(二分类)logistic_regression_class2.pyimportnumpyasnpimportmatplotlib.pyplotaspltclassLogisticRegression:"""逻辑回归,采用梯度下降算法+正则化,交叉熵损失函数,实现二分类"""def__init__(self,fit_intercept=True,normalize=True,a
- 梯度下降方法中的学习率(learning rate), 衰减因子(decay) 冲量(momentum)
17420
算法机器学习数学深度学习
本文总结自如下两个链接的内容,建议读者直接阅读链接中的文章1.https://www.jianshu.com/p/58b3fe300ecb2.https://www.jianshu.com/p/d8222a84613c学习率学习率lr(learningrate),梯度下降算法中迭代步长。假设待优化函数为func(x),dx为函数对变量x的导数,即下降方向。每次x的迭代公式为:x=x+-lr*dxl
- 学习速率 learning rate
羊肉串串魅力无穷
机器学习-深度学习
学习速率的选取策略运用梯度下降算法进行优化时,权重的更新规则中,在梯度项前会乘以一个系数,这个系数就叫学习速率ααα:如果学习速率太小,则会使收敛过慢。如果学习速率太大,则会导致代价函数振荡,迭代过快,梯度下降法可能会越过最低点,甚至可能发散。学习速率的取值取决于数据样本,可以多取一些值,从大到小,分别运行算法,看看迭代效果,如果损失函数在变小,说明取值有效,否则要增大步长。例如:把学习速率设置为
- 算法模型之回归模型(岭回归Ridge)
rookie-rookie-lu
机器学习回归机器学习线性回归pythonsklearn
线性回归:1.假设模型线性模型和线性关系是不同的,线性关系一定是线性模型,而线性模型不一定是线性关系2.优化算法正规方程正规方程可以比作成一个天才,只需要一次就可以求出各种权重和偏置梯度下降梯度下降算法可以比作一个勤奋努力的普通人,需要不断的迭代和试错3.sklearn实现LinearRegressionLinearRegression使用的是正规方程,正规方程的时间复杂度太大。一般不使用。SGD
- 深度学习之反向传播
丘小羽
pytorch深度学习人工智能
反向传播英文叫做BackPropagation。为什么需要使用反向传播对于简单的模型我们可以用解析式求出它的损失函数的梯度,例如,其损失函数的梯度就是,我们可以通过我们的数学知识很容易就得到其损失函数的梯度,继而进行使用梯度下降算法是参数(权重)更新。但是这仅限于对于简单的模型,一旦模型的深度增加,模型变得复杂,我们就很难直观的看出损失函数的梯度。例如这个模型,每连接的两个节点里面都有相应的权重,
- 机器学习的精髓-梯度下降算法
wyw0000
机器学习机器学习算法人工智能
目1.梯度下降算法2.梯度下降求解3.总结1.梯度下降算法梯度下降算法是一种优化算法,用于最小化函数的数值方法。它通过沿着函数梯度的反方向来更新参数,以逐步减小函数值。这一过程重复进行直到达到收敛条件。梯度下降算法有多种变体,包括批量梯度下降、随机梯度下降和小批量梯度下降。这些变体在处理大规模数据和优化不同类型的函数时具有不同的优势。2.梯度下降求解下面用一个例子来说明,使用梯度下降求极值的过程。
- 算法 单链的创建与删除
换个号韩国红果果
c算法
先创建结构体
struct student {
int data;
//int tag;//标记这是第几个
struct student *next;
};
// addone 用于将一个数插入已从小到大排好序的链中
struct student *addone(struct student *h,int x){
if(h==NULL) //??????
- 《大型网站系统与Java中间件实践》第2章读后感
白糖_
java中间件
断断续续花了两天时间试读了《大型网站系统与Java中间件实践》的第2章,这章总述了从一个小型单机构建的网站发展到大型网站的演化过程---整个过程会遇到很多困难,但每一个屏障都会有解决方案,最终就是依靠这些个解决方案汇聚到一起组成了一个健壮稳定高效的大型系统。
看完整章内容,
- zeus持久层spring事务单元测试
deng520159
javaDAOspringjdbc
今天把zeus事务单元测试放出来,让大家指出他的毛病,
1.ZeusTransactionTest.java 单元测试
package com.dengliang.zeus.webdemo.test;
import java.util.ArrayList;
import java.util.List;
import org.junit.Test;
import
- Rss 订阅 开发
周凡杨
htmlxml订阅rss规范
RSS是 Really Simple Syndication的缩写(对rss2.0而言,是这三个词的缩写,对rss1.0而言则是RDF Site Summary的缩写,1.0与2.0走的是两个体系)。
RSS
- 分页查询实现
g21121
分页查询
在查询列表时我们常常会用到分页,分页的好处就是减少数据交换,每次查询一定数量减少数据库压力等等。
按实现形式分前台分页和服务器分页:
前台分页就是一次查询出所有记录,在页面中用js进行虚拟分页,这种形式在数据量较小时优势比较明显,一次加载就不必再访问服务器了,但当数据量较大时会对页面造成压力,传输速度也会大幅下降。
服务器分页就是每次请求相同数量记录,按一定规则排序,每次取一定序号直接的数据
- spring jms异步消息处理
510888780
jms
spring JMS对于异步消息处理基本上只需配置下就能进行高效的处理。其核心就是消息侦听器容器,常用的类就是DefaultMessageListenerContainer。该容器可配置侦听器的并发数量,以及配合MessageListenerAdapter使用消息驱动POJO进行消息处理。且消息驱动POJO是放入TaskExecutor中进行处理,进一步提高性能,减少侦听器的阻塞。具体配置如下:
- highCharts柱状图
布衣凌宇
hightCharts柱图
第一步:导入 exporting.js,grid.js,highcharts.js;第二步:写controller
@Controller@RequestMapping(value="${adminPath}/statistick")public class StatistickController { private UserServi
- 我的spring学习笔记2-IoC(反向控制 依赖注入)
aijuans
springmvcSpring 教程spring3 教程Spring 入门
IoC(反向控制 依赖注入)这是Spring提出来了,这也是Spring一大特色。这里我不用多说,我们看Spring教程就可以了解。当然我们不用Spring也可以用IoC,下面我将介绍不用Spring的IoC。
IoC不是框架,她是java的技术,如今大多数轻量级的容器都会用到IoC技术。这里我就用一个例子来说明:
如:程序中有 Mysql.calss 、Oracle.class 、SqlSe
- TLS java简单实现
antlove
javasslkeystoretlssecure
1. SSLServer.java
package ssl;
import java.io.FileInputStream;
import java.io.InputStream;
import java.net.ServerSocket;
import java.net.Socket;
import java.security.KeyStore;
import
- Zip解压压缩文件
百合不是茶
Zip格式解压Zip流的使用文件解压
ZIP文件的解压缩实质上就是从输入流中读取数据。Java.util.zip包提供了类ZipInputStream来读取ZIP文件,下面的代码段创建了一个输入流来读取ZIP格式的文件;
ZipInputStream in = new ZipInputStream(new FileInputStream(zipFileName));
&n
- underscore.js 学习(一)
bijian1013
JavaScriptunderscore
工作中需要用到underscore.js,发现这是一个包括了很多基本功能函数的js库,里面有很多实用的函数。而且它没有扩展 javascript的原生对象。主要涉及对Collection、Object、Array、Function的操作。 学
- java jvm常用命令工具——jstatd命令(Java Statistics Monitoring Daemon)
bijian1013
javajvmjstatd
1.介绍
jstatd是一个基于RMI(Remove Method Invocation)的服务程序,它用于监控基于HotSpot的JVM中资源的创建及销毁,并且提供了一个远程接口允许远程的监控工具连接到本地的JVM执行命令。
jstatd是基于RMI的,所以在运行jstatd的服务
- 【Spring框架三】Spring常用注解之Transactional
bit1129
transactional
Spring可以通过注解@Transactional来为业务逻辑层的方法(调用DAO完成持久化动作)添加事务能力,如下是@Transactional注解的定义:
/*
* Copyright 2002-2010 the original author or authors.
*
* Licensed under the Apache License, Version
- 我(程序员)的前进方向
bitray
程序员
作为一个普通的程序员,我一直游走在java语言中,java也确实让我有了很多的体会.不过随着学习的深入,java语言的新技术产生的越来越多,从最初期的javase,我逐渐开始转变到ssh,ssi,这种主流的码农,.过了几天为了解决新问题,webservice的大旗也被我祭出来了,又过了些日子jms架构的activemq也开始必须学习了.再后来开始了一系列技术学习,osgi,restful.....
- nginx lua开发经验总结
ronin47
使用nginx lua已经两三个月了,项目接开发完毕了,这几天准备上线并且跟高德地图对接。回顾下来lua在项目中占得必中还是比较大的,跟PHP的占比差不多持平了,因此在开发中遇到一些问题备忘一下 1:content_by_lua中代码容量有限制,一般不要写太多代码,正常编写代码一般在100行左右(具体容量没有细心测哈哈,在4kb左右),如果超出了则重启nginx的时候会报 too long pa
- java-66-用递归颠倒一个栈。例如输入栈{1,2,3,4,5},1在栈顶。颠倒之后的栈为{5,4,3,2,1},5处在栈顶
bylijinnan
java
import java.util.Stack;
public class ReverseStackRecursive {
/**
* Q 66.颠倒栈。
* 题目:用递归颠倒一个栈。例如输入栈{1,2,3,4,5},1在栈顶。
* 颠倒之后的栈为{5,4,3,2,1},5处在栈顶。
*1. Pop the top element
*2. Revers
- 正确理解Linux内存占用过高的问题
cfyme
linux
Linux开机后,使用top命令查看,4G物理内存发现已使用的多大3.2G,占用率高达80%以上:
Mem: 3889836k total, 3341868k used, 547968k free, 286044k buffers
Swap: 6127608k total,&nb
- [JWFD开源工作流]当前流程引擎设计的一个急需解决的问题
comsci
工作流
当我们的流程引擎进入IRC阶段的时候,当循环反馈模型出现之后,每次循环都会导致一大堆节点内存数据残留在系统内存中,循环的次数越多,这些残留数据将导致系统内存溢出,并使得引擎崩溃。。。。。。
而解决办法就是利用汇编语言或者其它系统编程语言,在引擎运行时,把这些残留数据清除掉。
- 自定义类的equals函数
dai_lm
equals
仅作笔记使用
public class VectorQueue {
private final Vector<VectorItem> queue;
private class VectorItem {
private final Object item;
private final int quantity;
public VectorI
- Linux下安装R语言
datageek
R语言 linux
命令如下:sudo gedit /etc/apt/sources.list1、deb http://mirrors.ustc.edu.cn/CRAN/bin/linux/ubuntu/ precise/ 2、deb http://dk.archive.ubuntu.com/ubuntu hardy universesudo apt-key adv --keyserver ke
- 如何修改mysql 并发数(连接数)最大值
dcj3sjt126com
mysql
MySQL的连接数最大值跟MySQL没关系,主要看系统和业务逻辑了
方法一:进入MYSQL安装目录 打开MYSQL配置文件 my.ini 或 my.cnf查找 max_connections=100 修改为 max_connections=1000 服务里重起MYSQL即可
方法二:MySQL的最大连接数默认是100客户端登录:mysql -uusername -ppass
- 单一功能原则
dcj3sjt126com
面向对象的程序设计软件设计编程原则
单一功能原则[
编辑]
SOLID 原则
单一功能原则
开闭原则
Liskov代换原则
接口隔离原则
依赖反转原则
查
论
编
在面向对象编程领域中,单一功能原则(Single responsibility principle)规定每个类都应该有
- POJO、VO和JavaBean区别和联系
fanmingxing
VOPOJOjavabean
POJO和JavaBean是我们常见的两个关键字,一般容易混淆,POJO全称是Plain Ordinary Java Object / Plain Old Java Object,中文可以翻译成:普通Java类,具有一部分getter/setter方法的那种类就可以称作POJO,但是JavaBean则比POJO复杂很多,JavaBean是一种组件技术,就好像你做了一个扳子,而这个扳子会在很多地方被
- SpringSecurity3.X--LDAP:AD配置
hanqunfeng
SpringSecurity
前面介绍过基于本地数据库验证的方式,参考http://hanqunfeng.iteye.com/blog/1155226,这里说一下如何修改为使用AD进行身份验证【只对用户名和密码进行验证,权限依旧存储在本地数据库中】。
将配置文件中的如下部分删除:
<!-- 认证管理器,使用自定义的UserDetailsService,并对密码采用md5加密-->
- mac mysql 修改密码
IXHONG
mysql
$ sudo /usr/local/mysql/bin/mysqld_safe –user=root & //启动MySQL(也可以通过偏好设置面板来启动)$ sudo /usr/local/mysql/bin/mysqladmin -uroot password yourpassword //设置MySQL密码(注意,这是第一次MySQL密码为空的时候的设置命令,如果是修改密码,还需在-
- 设计模式--抽象工厂模式
kerryg
设计模式
抽象工厂模式:
工厂模式有一个问题就是,类的创建依赖于工厂类,也就是说,如果想要拓展程序,必须对工厂类进行修改,这违背了闭包原则。我们采用抽象工厂模式,创建多个工厂类,这样一旦需要增加新的功能,直接增加新的工厂类就可以了,不需要修改之前的代码。
总结:这个模式的好处就是,如果想增加一个功能,就需要做一个实现类,
- 评"高中女生军训期跳楼”
nannan408
首先,先抛出我的观点,各位看官少点砖头。那就是,中国的差异化教育必须做起来。
孔圣人有云:有教无类。不同类型的人,都应该有对应的教育方法。目前中国的一体化教育,不知道已经扼杀了多少创造性人才。我们出不了爱迪生,出不了爱因斯坦,很大原因,是我们的培养思路错了,我们是第一要“顺从”。如果不顺从,我们的学校,就会用各种方法,罚站,罚写作业,各种罚。军
- scala如何读取和写入文件内容?
qindongliang1922
javajvmscala
直接看如下代码:
package file
import java.io.RandomAccessFile
import java.nio.charset.Charset
import scala.io.Source
import scala.reflect.io.{File, Path}
/**
* Created by qindongliang on 2015/
- C语言算法之百元买百鸡
qiufeihu
c算法
中国古代数学家张丘建在他的《算经》中提出了一个著名的“百钱买百鸡问题”,鸡翁一,值钱五,鸡母一,值钱三,鸡雏三,值钱一,百钱买百鸡,问翁,母,雏各几何?
代码如下:
#include <stdio.h>
int main()
{
int cock,hen,chick; /*定义变量为基本整型*/
for(coc
- Hadoop集群安全性:Hadoop中Namenode单点故障的解决方案及详细介绍AvatarNode
wyz2009107220
NameNode
正如大家所知,NameNode在Hadoop系统中存在单点故障问题,这个对于标榜高可用性的Hadoop来说一直是个软肋。本文讨论一下为了解决这个问题而存在的几个solution。
1. Secondary NameNode
原理:Secondary NN会定期的从NN中读取editlog,与自己存储的Image进行合并形成新的metadata image
优点:Hadoop较早的版本都自带,