- 第四章 图论(4):SPFA求负环、差分约束、LCA
路哞哞
算法笔记图论算法LCA
目录一、SPFA求负环1.0SPFA判断负环1.1虫洞1.2观光奶牛(spfa&&01分数规划)1.3单词环二、差分约束2.1糖果2.2区间2.3排队布局2.4雇佣收银员2.5再卖菜三、最近公共祖先(LCA)3.1祖孙询问(倍增法)3.2距离(Tarjan算法)3.3次小生成树3.4暗之连锁一、SPFA求负环一般会和01分数规划结合负环:一个环且环上所有权值之和小于零负环对最短路径的影响:如果在求
- 备战蓝桥杯--01分数规划
cocoack
蓝桥杯c++算法
何为规划?即选择的方案何为01?即是否选择其实01分数规划也只是二分答案的延申。让我们直接看题目吧:下面为分析:首先,我们会想直接对每一个v/c,然后排序。实际上,选单个性价比大的不一定总价值/总花费大。于是我们二分总价值/总花费,然后判断。那如何判断呢?我们进行化简于是我们维护好这值即可。下面为AC代码:
- 【01分数规划】ABC324F
lamentropetion
二分动态规划图论算法
[ABC324F]BeautifulPath-洛谷思路首先看到这个形式很容易想到01分数规划,即去二分答案,然后就是转化成是否存在一个路径使得sigmab-mid*sigmac>=0显然只需要改变一下边权,跑一遍最长路即可#includeusingnamespacestd;#definelllonglong#definedoublelongdoubleconstintN=200200;constd
- 观光奶牛 (01分数规划、负环)
AE_
算法图论
01分数规划问题:类似于观光奶牛这个题中的,求的路径上的点权值和与边权值和的商最大最小。当前问题的推到如下:该问题其实可以用二分图来解决,在不断的二分答案中获取符合条件的最大值。然后问题就转化为如何是否存在和为mid的环。判断路径上点权和与边权和的商,是否大于mid;因为比权和为正,因此:移项得:因为他们单项是对应的,所以两个求和可以进行合并,如下:至此可以发现,存在环上路径得权值为正数即可,即是
- 三分/01分数规划
_fairyland
二分算法
三分最小球覆盖2018南京D三分套三分套三分constexprintN=105;structnode{intx,y,z;}a[N];intn;doubleroad(doublex1,doubley1,doublez1,doublex2,doubley2,doublez2){returnsqrt((x1-x2)*(x1-x2)+(y1-y2)*(y1-y2)+(z1-z2)*(z1-z2));}do
- AcWing算法提高课----图论 笔记 (SPFA找负环)
彡倾灬染|
算法学习笔记AcWing
SPFA找负环知识点讲解例题1:AcWing904.虫洞01分数规划例题2:AcWing361.观光奶牛例题3:AcWing1165.单词环知识点讲解负环:在一个有向(无向)图当中,存在一个环路,使得这个环的边权之和小于0求负环常见方法(基于SPFA、抽屉原理):统计每个点入队的次数,如果某个点入队n次,则说明存在负环(等价于bellman-Ford)统计当前每个点的最短路中所包含的边数,如果某点
- ACM模板_axiomofchoice
gman344
技术
语法c++java暴力算法离散化01分数规划任务规划|Livshits-Kladov定理分治逆序数×二维偏序最大空矩阵|悬线法搜索舞蹈链×DLX启发式算法动态规划多重背包最长不降子序列×LIS数位dp换根dp斜率优化四边形优化计算几何structof向量平面几何基本操作判断两条线段是否相交othersof平面几何基本操作二维凸包旋转卡壳最大空矩形|扫描法平面最近点对|分治最小圆覆盖|随机增量法st
- 第三章 图论 No.6负环之01分数规划与特殊建图方式
.SacaJawea
AcWing算法提高课课程记录图论
文章目录裸题:904.虫洞01分数规划:361.观光奶牛特殊建图与01分数规划+trick:1165.单词环裸题:904.虫洞904.虫洞-AcWing题库//虫洞是负权且单向边,道路是正权且双向边,题目较裸,判断有无负环即可#include#includeusingnamespacestd;constintN=510,M=6010;inth[N],e[M],ne[M],w[M],idx;intn
- 01分数规划 易懂+例题讲解 (c++)
取名真难.
c++数学建模开发语言
01分数规划:01即取还是不取,分数即所求型式为,规划就是选取最好的方案。一般情况题目给出n个物品,再给出每个物品的价值以及物重,选取k个物品,问你在所有可能选取的方案中,最大的单位价值为多少(单位价值为选取的k个物品的总价值和总重量的比值)。我们选择采用二分法,进行判断。我们要求的是选取的k个物品的总价值和总重量的比值最大,最终求得是。所以我们在可取的区间内每次取区间中值mid,判断是否符合,符
- 01分数规划
长剑凌清秋
01分数规划
01分数规划2019.9.6学习资料[Algorithm]01分数规划ByPerSeAwe01分数规划入门ByCaptainLi01分数规划问题相关算法与题目讲解(二分法与Dinkelbach算法)Bytianxiang971016【算法微解读】浅谈01分数规划Bydawnstar0/1分数规划详解ByJudge_Cheung简介01分数规划问题简单说来就是给你一堆物品,每件物品有两个属性a,b。
- 【算法微解读】浅谈01分数规划
weixin_30952103
数据结构与算法
浅谈01分数规划所谓01分数规划,看到这个名字,可能会想到01背包,其实长得差不多。这个算法就是要求“性价比”最高的解。sum(v)/sum(w)最高的解。定义我们给定两个数组,a[i]表示选取i的收益,b[i]表示选取i的代价。如果选取i,定义x[i]=1否则x[i]=0。每个物品只有选和不选的两种方案,求一个选择的方案使得R=sigma(a[i]x[i])/sigma(b[i]x[i]),也就
- 01分数规划学习笔记
weixin_30732825
数据结构与算法
浅谈01分数规划所谓01分数规划,看到这个名字,可能会想到01背包,其实长得差不多。这个算法就是要求“性价比”最高的解。sum(v)/sum(w)最高的解。定义我们给定两个数组,a[i]表示选取i的收益,b[i]表示选取i的代价。如果选取i,定义x[i]=1否则x[i]=0。每个物品只有选和不选的两种方案,求一个选择的方案使得R=sigma(a[i]x[i])/sigma(b[i]x[i]),也就
- 浅谈01分数规划-代码改变世界
Phantom_stars
01分数规划01分数规划
浅谈01分数规划所谓01分数规划,看到这个名字,可能会想到01背包,其实长得差不多。这个算法就是要求“性价比”最高的解。sum(v)/sum(w)最高的解。定义我们给定两个数组,a[i]表示选取i的收益,b[i]表示选取i的代价。如果选取i,定义x[i]=1否则x[i]=0。每个物品只有选和不选的两种方案,求一个选择的方案使得R=sigma(a[i]*x[i])/sigma(b[i]*x[i]),
- 浅谈01分数规划
零衣贰
学习笔记算法c++
对于形如求使得∑ai∑bi\frac{\suma_i}{\sumb_i}∑bi∑ai最值的问题,称为010101分数规划(选择一些aaa和bbb使得其某两属性之和的商取到最值)此题一般解法为二分答案求出最大最小值假如我们要求最大的∑ai∑bi\frac{\suma_i}{\sumb_i}∑bi∑aians=∑ai∑bians=\frac{\suma_i}{\sumb_i}ans=∑bi∑ai也就是
- 负环与01分数规划——观光奶牛
北岭山脚鼠鼠
#spfa扩展——负环与差分约束算法蓝桥杯c++
01分数规划,简单的来说,就是有一些二元组(si,pi),从中选取一些二元组,使得∑si/∑pi最大(最小)。这种题一类通用的解法就是,我们假设x=∑si/∑pi的最大(小)值,那么就有x*∑pi=∑si,即∑si-x*∑pi=0。也就是说,当某一个值x满足上述式子的时候,它就是要求的值。我们可以想到枚举……不过再想想,这个可以二分答案。所以我们直接二分答案,当上述式子>0,说明答案小了,0成立的
- poj2976(01分数规划)
Stayaccept
奇思妙想系列
链接:点击打开链接题意;有n场考试,给出每场答对的题数a和这场一共有几道题b,求去掉k场考试后,公式.的最大值代码:#include#include#include#include#include#includeusingnamespacestd;constintINF=0x3f3f3f3f;intn,m;doublea[1005],b[1005],c[1005];intjudge(doublem
- 01分数规划 总结报告
Jianzs_426
其他算法ACM
01分数规划参考:http://www.cnblogs.com/perseawe/archive/2012/05/03/01fsgh.html胡伯涛:《最小割模型在信息学竞赛中的应用》(强力推荐)定义分数规划是一类问题。而01分数规划是分数规划的一个特例。分数规划的一般形式:λ=f(x)=a(x)b(x),(x∈S),求λ最大或者最小。其中,解向量x在解空间S内,a(x)与b(x)都是连续的实值函
- 第二周总结
心夏心冬
每周(→∞)记录?
文章目录内容概括涉及算法题数相关算法模拟洛谷OJP1538迎春舞会之数字舞蹈01分数规划[牛客网暑期ACM多校训练营(第五场)](https://www.nowcoder.com/acm/contest/143)A思维[牛客网暑期ACM多校训练营(第五场)](https://www.nowcoder.com/acm/contest/143)J概率论枚举unsigned[牛客网暑期ACM多校训练营(
- XJOI 挖金矿(01分数规划)
Loi_ChlorineHikari
===二分===
考场上能想出来是二分,公式也推出来了,就是不会验证了….MDZZ。这个题有个奇葩的地方:“h*n0时,(∑i=1nv[i]∗d[i])。)-L*(∑i=1nd[i])>0(∑i=1nv[i]∗d[i])。)>L*(∑i=1nd[i])(∑i=1nv[i]∗d[i])。)/(∑i=1nd[i])L所以,当f(L)>0时,我们会得到一个比L更大的解,所以L需要增大。那么二分的时候,将一个L带进去验证,
- 洛谷P3199 [HNOI2009]最小圈(01分数规划)
weixin_30876945
题意题目链接Sol暴力01分数规划可过标算应该是这个#include#definePairpair#defineMP(x,y)make_pair(x,y)#definefifirst#definesesecond//#defineintlonglong#defineLLlonglong#defineFin(x){freopen(#x".in","r",stdin);}#defineFout(x){
- poj 2728 Desert King 01分数规划
weixin_30786617
题目大意:http://poj.org/problem?id=2728题解:裸的01分数规划#include#include#include#includeusingnamespacestd;typedeflonglongll;inlinevoidread(int&x){x=0;charch;boolflag=false;while(ch=getchar(),ch'!');if(flag)x=-x
- POJ 2728 Desert King 01分数规划,最优比率生成树
Angela㐅cc
一个完全图,每两个点之间的cost是海拔差距的绝对值,长度是平面欧式距离,让你找到一棵生成树,使得树边的的cost的和/距离的和,比例最小然后就是最优比例生成树,也就是01规划裸题看这一发:http://blog.csdn.net/sdj222555/article/details/7490797#include#include#include#include#includeusingnamesp
- POJ 2728 最优比率生成树 01分数规划问题
sdj222555
图论POJ最小生成树01分数规划
网上有一些很数学的证明方法,表示看的挺晕,自己理解了一下后,发表下自己的看法,如果有错误,再进行修改其实原题就是求MIN(∑CiXi/∑DiXi)Xi∈{0,1},对每个生成树,设其比率r=∑CiXi/∑DiXi,可得∑CiXi-∑DiXi*r=0(条件1)那么对于所有的生成树,显然∑CiXi-∑DiXi*min(r)>=0,当∑CiXi/∑DiXi=min(r)时,等号成立。而我们现在不知道mi
- poj-2728-Desert King-01分数规划+最小生成树
青竹梦
01分数规划的题目;由于是完全图,所以求最小生成树的时候要使用prime算法。否则的话很容易就超时了。#include#include#include#include#include#include#include#includeusingnamespacestd;#definemaxm1100*1100#definemaxn1100#defineeps0.000001#definezero(x)
- [POJ2728]Desert King(01分数规划)
Clove_unique
题解01分数规划
题目描述传送门题意:给出n个点的坐标和海拔,两个点之间的距离为欧氏距离,花费为海拔差,求一个生成树,满足每公里的花费最小题解一个裸的最优比率生成树问题二分R,然后每条边权记为di=costi−R∗leni然后求一个最小生成树,如果边权和小于0说明有更优解代码#include#include#include#include#includeusingnamespacestd;#defineN1005c
- poj 2728 Desert King(01分数规划--最优比率生成树)
Jaihk662
#最短路与最小生成树
DesertKingTimeLimit:3000MSMemoryLimit:65536KTotalSubmissions:26572Accepted:7370DescriptionDavidtheGreathasjustbecomethekingofadesertcountry.Towintherespectofhispeople,hedecidedtobuildchannelsalloverhi
- poj2728 Desert King(最小生成树+01分数规划=最优比率生成树)
Aaronliu17008
题意n个点完全图,每个边有两个权值,求分数规划要求的东西的最小值。(n2#include3#include4#include5constintN=1050;6constintinf=0x7fffffff;7usingnamespacestd;8intn,book[N];9doublex[N],y[N],h[N],w2[N][N],w1[N][N],ans,dis[N];10doubleprim(d
- P3705 [SDOI2017]新生舞会(01分数规划+费用流)
issue敲腻害
网络流24题
P3705[SDOI2017]新生舞会见识到了大名鼎鼎的010101分数规划…显然这是个二分图,但是这个价值计算放置太头疼了....显然这是个二分图,但是这个价值计算放置太头疼了....显然这是个二分图,但是这个价值计算放置太头疼了....令∑ai∑bi=maxx令\frac{\suma_i}{\sumb_i}=maxx令∑bi∑ai=maxx稍微变化一下maxx∗∑bi=∑aimaxx*\sum
- POJ2976-Dropping tests-01分数规划
weixin_30670151
关于01分数规划可以看这里,讲的很清楚:http://blog.csdn.net/hhaile/article/details/8883652二分的思想,每次只要选取最大的N-K个d[i],如果可以使F(L)>0,就说明可以更大。//这道题很早以前学长就挂过了,现在才学会。。。1/*----------------------------------------------------------
- POJ2976 - Dropping tests - 二分+01分数规划+思维
寒江雪里独钓着的蓑笠翁
二分思维acm算法poj
1.题目描述:DroppingtestsTimeLimit:1000MSMemoryLimit:65536KTotalSubmissions:11338Accepted:3947DescriptionInacertaincourse,youtakentests.Ifyougetaioutofbiquestionscorrectontesti,yourcumulativeaverageisdefin
- linux系统服务器下jsp传参数乱码
3213213333332132
javajsplinuxwindowsxml
在一次解决乱码问题中, 发现jsp在windows下用js原生的方法进行编码没有问题,但是到了linux下就有问题, escape,encodeURI,encodeURIComponent等都解决不了问题
但是我想了下既然原生的方法不行,我用el标签的方式对中文参数进行加密解密总该可以吧。于是用了java的java.net.URLDecoder,结果还是乱码,最后在绝望之际,用了下面的方法解决了
- Spring 注解区别以及应用
BlueSkator
spring
1. @Autowired
@Autowired是根据类型进行自动装配的。如果当Spring上下文中存在不止一个UserDao类型的bean,或者不存在UserDao类型的bean,会抛出 BeanCreationException异常,这时可以通过在该属性上再加一个@Qualifier注解来声明唯一的id解决问题。
2. @Qualifier
当spring中存在至少一个匹
- printf和sprintf的应用
dcj3sjt126com
PHPsprintfprintf
<?php
printf('b: %b <br>c: %c <br>d: %d <bf>f: %f', 80,80, 80, 80);
echo '<br />';
printf('%0.2f <br>%+d <br>%0.2f <br>', 8, 8, 1235.456);
printf('th
- config.getInitParameter
171815164
parameter
web.xml
<servlet>
<servlet-name>servlet1</servlet-name>
<jsp-file>/index.jsp</jsp-file>
<init-param>
<param-name>str</param-name>
- Ant标签详解--基础操作
g21121
ant
Ant的一些核心概念:
build.xml:构建文件是以XML 文件来描述的,默认构建文件名为build.xml。 project:每个构建文
- [简单]代码片段_数据合并
53873039oycg
代码
合并规则:删除家长phone为空的记录,若一个家长对应多个孩子,保留一条家长记录,家长id修改为phone,对应关系也要修改。
代码如下:
- java 通信技术
云端月影
Java 远程通信技术
在分布式服务框架中,一个最基础的问题就是远程服务是怎么通讯的,在Java领域中有很多可实现远程通讯的技术,例如:RMI、MINA、ESB、Burlap、Hessian、SOAP、EJB和JMS等,这些名词之间到底是些什么关系呢,它们背后到底是基于什么原理实现的呢,了解这些是实现分布式服务框架的基础知识,而如果在性能上有高的要求的话,那深入了解这些技术背后的机制就是必须的了,在这篇blog中我们将来
- string与StringBuilder 性能差距到底有多大
aijuans
之前也看过一些对string与StringBuilder的性能分析,总感觉这个应该对整体性能不会产生多大的影响,所以就一直没有关注这块!
由于学程序初期最先接触的string拼接,所以就一直没改变过自己的习惯!
- 今天碰到 java.util.ConcurrentModificationException 异常
antonyup_2006
java多线程工作IBM
今天改bug,其中有个实现是要对map进行循环,然后有删除操作,代码如下:
Iterator<ListItem> iter = ItemMap.keySet.iterator();
while(iter.hasNext()){
ListItem it = iter.next();
//...一些逻辑操作
ItemMap.remove(it);
}
结果运行报Con
- PL/SQL的类型和JDBC操作数据库
百合不是茶
PL/SQL表标量类型游标PL/SQL记录
PL/SQL的标量类型:
字符,数字,时间,布尔,%type五中类型的
--标量:数据库中预定义类型的变量
--定义一个变长字符串
v_ename varchar2(10);
--定义一个小数,范围 -9999.99~9999.99
v_sal number(6,2);
--定义一个小数并给一个初始值为5.4 :=是pl/sql的赋值号
- Mockito:一个强大的用于 Java 开发的模拟测试框架实例
bijian1013
mockito单元测试
Mockito框架:
Mockito是一个基于MIT协议的开源java测试框架。 Mockito区别于其他模拟框架的地方主要是允许开发者在没有建立“预期”时验证被测系统的行为。对于mock对象的一个评价是测试系统的测
- 精通Oracle10编程SQL(10)处理例外
bijian1013
oracle数据库plsql
/*
*处理例外
*/
--例外简介
--处理例外-传递例外
declare
v_ename emp.ename%TYPE;
begin
SELECT ename INTO v_ename FROM emp
where empno=&no;
dbms_output.put_line('雇员名:'||v_ename);
exceptio
- 【Java】Java执行远程机器上Linux命令
bit1129
linux命令
Java使用ethz通过ssh2执行远程机器Linux上命令,
封装定义Linux机器的环境信息
package com.tom;
import java.io.File;
public class Env {
private String hostaddr; //Linux机器的IP地址
private Integer po
- java通信之Socket通信基础
白糖_
javasocket网络协议
正处于网络环境下的两个程序,它们之间通过一个交互的连接来实现数据通信。每一个连接的通信端叫做一个Socket。一个完整的Socket通信程序应该包含以下几个步骤:
①创建Socket;
②打开连接到Socket的输入输出流;
④按照一定的协议对Socket进行读写操作;
④关闭Socket。
Socket通信分两部分:服务器端和客户端。服务器端必须优先启动,然后等待soc
- angular.bind
boyitech
AngularJSangular.bindAngularJS APIbind
angular.bind 描述: 上下文,函数以及参数动态绑定,返回值为绑定之后的函数. 其中args是可选的动态参数,self在fn中使用this调用。 使用方法: angular.bind(se
- java-13个坏人和13个好人站成一圈,数到7就从圈里面踢出一个来,要求把所有坏人都给踢出来,所有好人都留在圈里。请找出初始时坏人站的位置。
bylijinnan
java
import java.util.ArrayList;
import java.util.List;
public class KickOutBadGuys {
/**
* 题目:13个坏人和13个好人站成一圈,数到7就从圈里面踢出一个来,要求把所有坏人都给踢出来,所有好人都留在圈里。请找出初始时坏人站的位置。
* Maybe you can find out
- Redis.conf配置文件及相关项说明(自查备用)
Kai_Ge
redis
Redis.conf配置文件及相关项说明
# Redis configuration file example
# Note on units: when memory size is needed, it is possible to specifiy
# it in the usual form of 1k 5GB 4M and so forth:
#
- [强人工智能]实现大规模拓扑分析是实现强人工智能的前奏
comsci
人工智能
真不好意思,各位朋友...博客再次更新...
节点数量太少,网络的分析和处理能力肯定不足,在面对机器人控制的需求方面,显得力不从心....
但是,节点数太多,对拓扑数据处理的要求又很高,设计目标也很高,实现起来难度颇大...
- 记录一些常用的函数
dai_lm
java
public static String convertInputStreamToString(InputStream is) {
StringBuilder result = new StringBuilder();
if (is != null)
try {
InputStreamReader inputReader = new InputStreamRead
- Hadoop中小规模集群的并行计算缺陷
datamachine
mapreducehadoop并行计算
注:写这篇文章的初衷是因为Hadoop炒得有点太热,很多用户现有数据规模并不适用于Hadoop,但迫于扩容压力和去IOE(Hadoop的廉价扩展的确非常有吸引力)而尝试。尝试永远是件正确的事儿,但有时候不用太突进,可以调优或调需求,发挥现有系统的最大效用为上策。
-----------------------------------------------------------------
- 小学4年级英语单词背诵第二课
dcj3sjt126com
englishword
egg 蛋
twenty 二十
any 任何
well 健康的,好
twelve 十二
farm 农场
every 每一个
back 向后,回
fast 快速的
whose 谁的
much 许多
flower 花
watch 手表
very 非常,很
sport 运动
Chinese 中国的
- 自己实践了github的webhooks, linux上面的权限需要注意
dcj3sjt126com
githubwebhook
环境, 阿里云服务器
1. 本地创建项目, push到github服务器上面
2. 生成www用户的密钥
sudo -u www ssh-keygen -t rsa -C "
[email protected]"
3. 将密钥添加到github帐号的SSH_KEYS里面
3. 用www用户执行克隆, 源使
- Java冒泡排序
蕃薯耀
冒泡排序Java冒泡排序Java排序
冒泡排序
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
蕃薯耀 2015年6月23日 10:40:14 星期二
http://fanshuyao.iteye.com/
- Excle读取数据转换为实体List【基于apache-poi】
hanqunfeng
apache
1.依赖apache-poi
2.支持xls和xlsx
3.支持按属性名称绑定数据值
4.支持从指定行、列开始读取
5.支持同时读取多个sheet
6.具体使用方式参见org.cpframework.utils.excelreader.CP_ExcelReaderUtilTest.java
比如:
Str
- 3个处于草稿阶段的Javascript API介绍
jackyrong
JavaScript
原文:
http://www.sitepoint.com/3-new-javascript-apis-may-want-follow/?utm_source=html5weekly&utm_medium=email
本文中,介绍3个仍然处于草稿阶段,但应该值得关注的Javascript API.
1) Web Alarm API
&
- 6个创建Web应用程序的高效PHP框架
lampcy
Web框架PHP
以下是创建Web应用程序的PHP框架,有coder bay网站整理推荐:
1. CakePHP
CakePHP是一个PHP快速开发框架,它提供了一个用于开发、维护和部署应用程序的可扩展体系。CakePHP使用了众所周知的设计模式,如MVC和ORM,降低了开发成本,并减少了开发人员写代码的工作量。
2. CodeIgniter
CodeIgniter是一个非常小且功能强大的PHP框架,适合需
- 评"救市后中国股市新乱象泛起"谣言
nannan408
首先来看百度百家一位易姓作者的新闻:
三个多星期来股市持续暴跌,跌得投资者及上市公司都处于极度的恐慌和焦虑中,都要寻找自保及规避风险的方式。面对股市之危机,政府突然进入市场救市,希望以此来重建市场信心,以此来扭转股市持续暴跌的预期。而政府进入市场后,由于市场运作方式发生了巨大变化,投资者及上市公司为了自保及为了应对这种变化,中国股市新的乱象也自然产生。
首先,中国股市这两天
- 页面全屏遮罩的实现 方式
Rainbow702
htmlcss遮罩mask
之前做了一个页面,在点击了某个按钮之后,要求页面出现一个全屏遮罩,一开始使用了position:absolute来实现的。当时因为画面大小是固定的,不可以resize的,所以,没有发现问题。
最近用了同样的做法做了一个遮罩,但是画面是可以进行resize的,所以就发现了一个问题,当画面被reisze到浏览器出现了滚动条的时候,就发现,用absolute 的做法是有问题的。后来改成fixed定位就
- 关于angularjs的点滴
tntxia
AngularJS
angular是一个新兴的JS框架,和以往的框架不同的事,Angularjs更注重于js的建模,管理,同时也提供大量的组件帮助用户组建商业化程序,是一种值得研究的JS框架。
Angularjs使我们可以使用MVC的模式来写JS。Angularjs现在由谷歌来维护。
这里我们来简单的探讨一下它的应用。
首先使用Angularjs我
- Nutz--->>反复新建ioc容器的后果
xiaoxiao1992428
DAOmvcIOCnutz
问题:
public class DaoZ {
public static Dao dao() { // 每当需要使用dao的时候就取一次
Ioc ioc = new NutIoc(new JsonLoader("dao.js"));
return ioc.get(