- 第四章 图论(4):SPFA求负环、差分约束、LCA
路哞哞
算法笔记图论算法LCA
目录一、SPFA求负环1.0SPFA判断负环1.1虫洞1.2观光奶牛(spfa&&01分数规划)1.3单词环二、差分约束2.1糖果2.2区间2.3排队布局2.4雇佣收银员2.5再卖菜三、最近公共祖先(LCA)3.1祖孙询问(倍增法)3.2距离(Tarjan算法)3.3次小生成树3.4暗之连锁一、SPFA求负环一般会和01分数规划结合负环:一个环且环上所有权值之和小于零负环对最短路径的影响:如果在求
- 备战蓝桥杯--01分数规划
cocoack
蓝桥杯c++算法
何为规划?即选择的方案何为01?即是否选择其实01分数规划也只是二分答案的延申。让我们直接看题目吧:下面为分析:首先,我们会想直接对每一个v/c,然后排序。实际上,选单个性价比大的不一定总价值/总花费大。于是我们二分总价值/总花费,然后判断。那如何判断呢?我们进行化简于是我们维护好这值即可。下面为AC代码:
- 网络流问题总结
cqbzcsq
图论总结网络流费用流上下界网络流最小割最小割树
一、纯最大流问题这种一般遇到得比较少,除非是板题二、最大流最小割问题这种问题一般是把全集分为两类数,求分开这个集合(或是选出某个子集)的最小代价是多少。有关技巧:利用容量为INF的边来干涉决策,如最大权闭合子图将所选集合的点的邻接边权求和分析,如最大密度子图判定S,T集合时必须用dfs相关算法:分数规划易错点:cnt初始时没有赋为1(很容易浪费时间)在写gap优化时一定要单独注明总点数sz总点数计
- 【01分数规划】ABC324F
lamentropetion
二分动态规划图论算法
[ABC324F]BeautifulPath-洛谷思路首先看到这个形式很容易想到01分数规划,即去二分答案,然后就是转化成是否存在一个路径使得sigmab-mid*sigmac>=0显然只需要改变一下边权,跑一遍最长路即可#includeusingnamespacestd;#definelllonglong#definedoublelongdoubleconstintN=200200;constd
- 观光奶牛 (01分数规划、负环)
AE_
算法图论
01分数规划问题:类似于观光奶牛这个题中的,求的路径上的点权值和与边权值和的商最大最小。当前问题的推到如下:该问题其实可以用二分图来解决,在不断的二分答案中获取符合条件的最大值。然后问题就转化为如何是否存在和为mid的环。判断路径上点权和与边权和的商,是否大于mid;因为比权和为正,因此:移项得:因为他们单项是对应的,所以两个求和可以进行合并,如下:至此可以发现,存在环上路径得权值为正数即可,即是
- 三分/01分数规划
_fairyland
二分算法
三分最小球覆盖2018南京D三分套三分套三分constexprintN=105;structnode{intx,y,z;}a[N];intn;doubleroad(doublex1,doubley1,doublez1,doublex2,doubley2,doublez2){returnsqrt((x1-x2)*(x1-x2)+(y1-y2)*(y1-y2)+(z1-z2)*(z1-z2));}do
- 【图论 进阶】差分约束 学习笔记
yaohua小猴子
算法进阶-学习笔记图论学习算法c++csp
差分约束意在理解数学与图论直接的关系。文章目录0x00差分约束的使用场景0x10差分约束工作原理0x20差分约束的拓展0x210/1分数规划0x22Tarjan优化差分约束0x30差分约束的模板P59600x40例题0x41P1993小K的农场0x42P2294[HNOI2005]狡猾的商人0x43P2868[USACO07DEC]SightseeingCowsG0x44P3275[SCOI201
- AcWing算法提高课----图论 笔记 (SPFA找负环)
彡倾灬染|
算法学习笔记AcWing
SPFA找负环知识点讲解例题1:AcWing904.虫洞01分数规划例题2:AcWing361.观光奶牛例题3:AcWing1165.单词环知识点讲解负环:在一个有向(无向)图当中,存在一个环路,使得这个环的边权之和小于0求负环常见方法(基于SPFA、抽屉原理):统计每个点入队的次数,如果某个点入队n次,则说明存在负环(等价于bellman-Ford)统计当前每个点的最短路中所包含的边数,如果某点
- ACM模板_axiomofchoice
gman344
技术
语法c++java暴力算法离散化01分数规划任务规划|Livshits-Kladov定理分治逆序数×二维偏序最大空矩阵|悬线法搜索舞蹈链×DLX启发式算法动态规划多重背包最长不降子序列×LIS数位dp换根dp斜率优化四边形优化计算几何structof向量平面几何基本操作判断两条线段是否相交othersof平面几何基本操作二维凸包旋转卡壳最大空矩形|扫描法平面最近点对|分治最小圆覆盖|随机增量法st
- 分数问题善用移项:0902T2
Qres821
算法分数规划二分
其实就是分数规划,但不完全是。对于求∑pili∑li\Large\frac{\sump_il_i}{\suml_i}∑li∑pili在限定条件下的最大值,此类问题可以考虑二分答案并移项。∑pili∑li≥k\Large\frac{\sump_il_i}{\suml_i}\gek∑li∑pili≥k∑pili≥k∑li\Large\sump_il_i\gek\suml_i∑pili≥k∑li∑(pi
- [USACO07DEC] Sightseeing Cows G(分数规划+负权回路判定)
cqbzcsq
算法数学SPFA二分C++
题面[USACO07DEC]SightseeingCowsG-洛谷题目大意:给出一张n点m边的带点权带边权的有向图求一个回路使得路上点权和除以边权和最大(最优比率回路)题解首先一定仔细读题,是回路不是路径由于回路上所有点权只能获取一次,但边权会获取很多次,所以最优解一定是简单回路(无重复边)然后我们发现是让一个分数最大,于是我们可以考虑分数规划二分假设二分的商为mid,判断是否存在一个满足点边权和
- 分数规划(二分)
Ch714254994
c++算法
链接:登录—专业IT笔试面试备考平台_牛客网来源:牛客网题目描述小咪是一个土豪手办狂魔,这次他去了一家店,发现了好多好多(n个)手办,但他是一个很怪的人,每次只想买k个手办,而且他要让他花的每一分钱都物超所值,即:买下来的东西的总价值/总花费=max。请你来看看,他会买哪些东西吧。输入描述:多组数据。第一行一个整数T,为数据组数。接下来有T组数据。对于每组数据,第一行两个正整数n,k,如题。接下来
- 第三章 图论 No.6负环之01分数规划与特殊建图方式
.SacaJawea
AcWing算法提高课课程记录图论
文章目录裸题:904.虫洞01分数规划:361.观光奶牛特殊建图与01分数规划+trick:1165.单词环裸题:904.虫洞904.虫洞-AcWing题库//虫洞是负权且单向边,道路是正权且双向边,题目较裸,判断有无负环即可#include#includeusingnamespacestd;constintN=510,M=6010;inth[N],e[M],ne[M],w[M],idx;intn
- 0/1分数规划+0/1背包模型(p4377)
Knight840
数论洛谷动态规划算法c++
发现又是一道求max的0/1分数规划的题目,与普通的0/1分数规划不同的是,这题加了一个限制条件,总重量不低于W,我们只要把重量超过w看成等于w,这题不就是一个0/1背包问题。对于0/1分数规划问题:(3条消息)0/1分数规划(poj2976)_Knight840的博客-CSDN博客对于0/1背包问题:dp[j]表示重量为j的最大权值,由于每个物品只有一个,且dp[j]是由比j小的值确定,如果从小
- 0/1分数规划(poj2976)
Knight840
数论pojc++算法
输入数列{}和{},从两个数列中去掉k对,选择n-k对,求的最大值,取1或0分别表示选或者不选第i对数。0usingnamespacestd;intn,k;structnode{inta;intb;doubley;}h[1005];booltmp(nodea,nodeb){returna.y>b.y;}boolcheck(doublem){for(inti=0;i=0)return1;elsere
- 01分数规划 易懂+例题讲解 (c++)
取名真难.
c++数学建模开发语言
01分数规划:01即取还是不取,分数即所求型式为,规划就是选取最好的方案。一般情况题目给出n个物品,再给出每个物品的价值以及物重,选取k个物品,问你在所有可能选取的方案中,最大的单位价值为多少(单位价值为选取的k个物品的总价值和总重量的比值)。我们选择采用二分法,进行判断。我们要求的是选取的k个物品的总价值和总重量的比值最大,最终求得是。所以我们在可取的区间内每次取区间中值mid,判断是否符合,符
- 【Noip】考纲
weixin_30767835
转自他人博客基础算法贪心√、枚举√、分治√、二分√、倍增√、*构造√、高精√、模拟√图论最短路(dijkstra、spfa、floyd),差分约束最小生成树(kruskal、prim)并查集(扩展域)拓扑排序二分图染色,二分图匹配tarjan找scc、桥、割点,缩点分数规划树树上倍增(LCA)树的直径、树的重心dfs序*树链剖分数论gcd、lcm√埃氏筛法√exgcd,求解同余方程、逆元√快速幂√
- NOIP考纲
安一825
信息奥赛计算机基础知识
转自他人博客基础算法贪心√、枚举√、分治√、二分√、倍增√、*构造√、高精√、模拟√图论最短路(dijkstra、spfa、floyd),差分约束最小生成树(kruskal、prim)并查集(扩展域)拓扑排序二分图染色,*二分图匹配tarjan找scc、桥、割点,缩点*分数规划树树上倍增(LCA)树的直径、树的重心dfs序*树链剖分数论gcd、lcm√埃氏筛法√exgcd,求解同余方程、逆元√快速
- 01分数规划
长剑凌清秋
01分数规划
01分数规划2019.9.6学习资料[Algorithm]01分数规划ByPerSeAwe01分数规划入门ByCaptainLi01分数规划问题相关算法与题目讲解(二分法与Dinkelbach算法)Bytianxiang971016【算法微解读】浅谈01分数规划Bydawnstar0/1分数规划详解ByJudge_Cheung简介01分数规划问题简单说来就是给你一堆物品,每件物品有两个属性a,b。
- 【算法微解读】浅谈01分数规划
weixin_30952103
数据结构与算法
浅谈01分数规划所谓01分数规划,看到这个名字,可能会想到01背包,其实长得差不多。这个算法就是要求“性价比”最高的解。sum(v)/sum(w)最高的解。定义我们给定两个数组,a[i]表示选取i的收益,b[i]表示选取i的代价。如果选取i,定义x[i]=1否则x[i]=0。每个物品只有选和不选的两种方案,求一个选择的方案使得R=sigma(a[i]x[i])/sigma(b[i]x[i]),也就
- 01分数规划学习笔记
weixin_30732825
数据结构与算法
浅谈01分数规划所谓01分数规划,看到这个名字,可能会想到01背包,其实长得差不多。这个算法就是要求“性价比”最高的解。sum(v)/sum(w)最高的解。定义我们给定两个数组,a[i]表示选取i的收益,b[i]表示选取i的代价。如果选取i,定义x[i]=1否则x[i]=0。每个物品只有选和不选的两种方案,求一个选择的方案使得R=sigma(a[i]x[i])/sigma(b[i]x[i]),也就
- 浅谈0/1分数规划
ZBoWing
二分二分答案
题面见POJ2676这就是一道0/1分数规划的模板题,其最经典的做法就是二分答案,然后check一下就可以了。PS:注意double类型精度问题。那么直接看代码吧:#include#definemaxn1111#defineINF0x7fffffff#defineeps1e-15#definepiacos(-1.0)#definee2.718281828459#definemod(int)1e9+
- 浅谈01分数规划-代码改变世界
Phantom_stars
01分数规划01分数规划
浅谈01分数规划所谓01分数规划,看到这个名字,可能会想到01背包,其实长得差不多。这个算法就是要求“性价比”最高的解。sum(v)/sum(w)最高的解。定义我们给定两个数组,a[i]表示选取i的收益,b[i]表示选取i的代价。如果选取i,定义x[i]=1否则x[i]=0。每个物品只有选和不选的两种方案,求一个选择的方案使得R=sigma(a[i]*x[i])/sigma(b[i]*x[i]),
- 浅谈01分数规划
零衣贰
学习笔记算法c++
对于形如求使得∑ai∑bi\frac{\suma_i}{\sumb_i}∑bi∑ai最值的问题,称为010101分数规划(选择一些aaa和bbb使得其某两属性之和的商取到最值)此题一般解法为二分答案求出最大最小值假如我们要求最大的∑ai∑bi\frac{\suma_i}{\sumb_i}∑bi∑aians=∑ai∑bians=\frac{\suma_i}{\sumb_i}ans=∑bi∑ai也就是
- 负环与01分数规划——观光奶牛
北岭山脚鼠鼠
#spfa扩展——负环与差分约束算法蓝桥杯c++
01分数规划,简单的来说,就是有一些二元组(si,pi),从中选取一些二元组,使得∑si/∑pi最大(最小)。这种题一类通用的解法就是,我们假设x=∑si/∑pi的最大(小)值,那么就有x*∑pi=∑si,即∑si-x*∑pi=0。也就是说,当某一个值x满足上述式子的时候,它就是要求的值。我们可以想到枚举……不过再想想,这个可以二分答案。所以我们直接二分答案,当上述式子>0,说明答案小了,0成立的
- poj Desert King ---- 最小比率生成树(0/1 分数规划)
liuzhexuan1
题意简化如下:给定nnn个村庄的坐标(n=ans\displaystyle\frac{\sum_{i=0}^mx_ip_i}{\sum_{i=0}^mx_il_i}>=ans∑i=0mxili∑i=0mxipi>=ans,即从mmm条边中选出任意n−1n-1n−1条边,一定会有∑i=0mxipi∑i=0mxili>=ans\displaystyle\frac{\sum_{i=0}^mx_ip_i}
- poj2976(01分数规划)
Stayaccept
奇思妙想系列
链接:点击打开链接题意;有n场考试,给出每场答对的题数a和这场一共有几道题b,求去掉k场考试后,公式.的最大值代码:#include#include#include#include#include#includeusingnamespacestd;constintINF=0x3f3f3f3f;intn,m;doublea[1005],b[1005],c[1005];intjudge(doublem
- [SCOI2018]游泳池(计算几何+分数规划+最大权闭合子图)
anzi3457
数据结构与算法
题目链接https://www.luogu.org/problemnew/show/U56187注:题面参考了网上的其他博客,并非原题题面,因此数据范围可能有误。数据为原创数据。题解其实就是许多板子码到一起。首先对于边缘上的任意一点\(u\),假设离它最远的顶点为\(A\),那么我们称点\(u\)位于顶点\(A\)的控制范围之中。我们考虑在没有石雕的情况下怎么求出每个顶点的控制范围。对于除顶点\(
- 01分数规划 总结报告
Jianzs_426
其他算法ACM
01分数规划参考:http://www.cnblogs.com/perseawe/archive/2012/05/03/01fsgh.html胡伯涛:《最小割模型在信息学竞赛中的应用》(强力推荐)定义分数规划是一类问题。而01分数规划是分数规划的一个特例。分数规划的一般形式:λ=f(x)=a(x)b(x),(x∈S),求λ最大或者最小。其中,解向量x在解空间S内,a(x)与b(x)都是连续的实值函
- 第二周总结
心夏心冬
每周(→∞)记录?
文章目录内容概括涉及算法题数相关算法模拟洛谷OJP1538迎春舞会之数字舞蹈01分数规划[牛客网暑期ACM多校训练营(第五场)](https://www.nowcoder.com/acm/contest/143)A思维[牛客网暑期ACM多校训练营(第五场)](https://www.nowcoder.com/acm/contest/143)J概率论枚举unsigned[牛客网暑期ACM多校训练营(
- js动画html标签(持续更新中)
843977358
htmljs动画mediaopacity
1.jQuery 效果 - animate() 方法 改变 "div" 元素的高度: $(".btn1").click(function(){ $("#box").animate({height:"300px
- springMVC学习笔记
caoyong
springMVC
1、搭建开发环境
a>、添加jar文件,在ioc所需jar包的基础上添加spring-web.jar,spring-webmvc.jar
b>、在web.xml中配置前端控制器
<servlet>
&nbs
- POI中设置Excel单元格格式
107x
poistyle列宽合并单元格自动换行
引用:http://apps.hi.baidu.com/share/detail/17249059
POI中可能会用到一些需要设置EXCEL单元格格式的操作小结:
先获取工作薄对象:
HSSFWorkbook wb = new HSSFWorkbook();
HSSFSheet sheet = wb.createSheet();
HSSFCellStyle setBorder = wb.
- jquery 获取A href 触发js方法的this参数 无效的情况
一炮送你回车库
jquery
html如下:
<td class=\"bord-r-n bord-l-n c-333\">
<a class=\"table-icon edit\" onclick=\"editTrValues(this);\">修改</a>
</td>"
j
- md5
3213213333332132
MD5
import java.security.MessageDigest;
import java.security.NoSuchAlgorithmException;
public class MDFive {
public static void main(String[] args) {
String md5Str = "cq
- 完全卸载干净Oracle11g
sophia天雪
orale数据库卸载干净清理注册表
完全卸载干净Oracle11g
A、存在OUI卸载工具的情况下:
第一步:停用所有Oracle相关的已启动的服务;
第二步:找到OUI卸载工具:在“开始”菜单中找到“oracle_OraDb11g_home”文件夹中
&
- apache 的access.log 日志文件太大如何解决
darkranger
apache
CustomLog logs/access.log common 此写法导致日志数据一致自增变大。
直接注释上面的语法
#CustomLog logs/access.log common
增加:
CustomLog "|bin/rotatelogs.exe -l logs/access-%Y-%m-d.log 
- Hadoop单机模式环境搭建关键步骤
aijuans
分布式
Hadoop环境需要sshd服务一直开启,故,在服务器上需要按照ssh服务,以Ubuntu Linux为例,按照ssh服务如下:
sudo apt-get install ssh
sudo apt-get install rsync
编辑HADOOP_HOME/conf/hadoop-env.sh文件,将JAVA_HOME设置为Java
- PL/SQL DEVELOPER 使用的一些技巧
atongyeye
javasql
1 记住密码
这是个有争议的功能,因为记住密码会给带来数据安全的问题。 但假如是开发用的库,密码甚至可以和用户名相同,每次输入密码实在没什么意义,可以考虑让PLSQL Developer记住密码。 位置:Tools菜单--Preferences--Oracle--Logon HIstory--Store with password
2 特殊Copy
在SQL Window
- PHP:在对象上动态添加一个新的方法
bardo
方法动态添加闭包
有关在一个对象上动态添加方法,如果你来自Ruby语言或您熟悉这门语言,你已经知道它是什么...... Ruby提供给你一种方式来获得一个instancied对象,并给这个对象添加一个额外的方法。
好!不说Ruby了,让我们来谈谈PHP
PHP未提供一个“标准的方式”做这样的事情,这也是没有核心的一部分...
但无论如何,它并没有说我们不能做这样
- ThreadLocal与线程安全
bijian1013
javajava多线程threadLocal
首先来看一下线程安全问题产生的两个前提条件:
1.数据共享,多个线程访问同样的数据。
2.共享数据是可变的,多个线程对访问的共享数据作出了修改。
实例:
定义一个共享数据:
public static int a = 0;
- Tomcat 架包冲突解决
征客丶
tomcatWeb
环境:
Tomcat 7.0.6
win7 x64
错误表象:【我的冲突的架包是:catalina.jar 与 tomcat-catalina-7.0.61.jar 冲突,不知道其他架包冲突时是不是也报这个错误】
严重: End event threw exception
java.lang.NoSuchMethodException: org.apache.catalina.dep
- 【Scala三】分析Spark源代码总结的Scala语法一
bit1129
scala
Scala语法 1. classOf运算符
Scala中的classOf[T]是一个class对象,等价于Java的T.class,比如classOf[TextInputFormat]等价于TextInputFormat.class
2. 方法默认值
defaultMinPartitions就是一个默认值,类似C++的方法默认值
- java 线程池管理机制
BlueSkator
java线程池管理机制
编辑
Add
Tools
jdk线程池
一、引言
第一:降低资源消耗。通过重复利用已创建的线程降低线程创建和销毁造成的消耗。第二:提高响应速度。当任务到达时,任务可以不需要等到线程创建就能立即执行。第三:提高线程的可管理性。线程是稀缺资源,如果无限制的创建,不仅会消耗系统资源,还会降低系统的稳定性,使用线程池可以进行统一的分配,调优和监控。
- 关于hql中使用本地sql函数的问题(问-答)
BreakingBad
HQL存储函数
转自于:http://www.iteye.com/problems/23775
问:
我在开发过程中,使用hql进行查询(mysql5)使用到了mysql自带的函数find_in_set()这个函数作为匹配字符串的来讲效率非常好,但是我直接把它写在hql语句里面(from ForumMemberInfo fm,ForumArea fa where find_in_set(fm.userId,f
- 读《研磨设计模式》-代码笔记-迭代器模式-Iterator
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
import java.util.Arrays;
import java.util.List;
/**
* Iterator模式提供一种方法顺序访问一个聚合对象中各个元素,而又不暴露该对象内部表示
*
* 个人觉得,为了不暴露该
- 常用SQL
chenjunt3
oraclesqlC++cC#
--NC建库
CREATE TABLESPACE NNC_DATA01 DATAFILE 'E:\oracle\product\10.2.0\oradata\orcl\nnc_data01.dbf' SIZE 500M AUTOEXTEND ON NEXT 50M EXTENT MANAGEMENT LOCAL UNIFORM SIZE 256K ;
CREATE TABLESPA
- 数学是科学技术的语言
comsci
工作活动领域模型
从小学到大学都在学习数学,从小学开始了解数字的概念和背诵九九表到大学学习复变函数和离散数学,看起来好像掌握了这些数学知识,但是在工作中却很少真正用到这些知识,为什么?
最近在研究一种开源软件-CARROT2的源代码的时候,又一次感觉到数学在计算机技术中的不可动摇的基础作用,CARROT2是一种用于自动语言分类(聚类)的工具性软件,用JAVA语言编写,它
- Linux系统手动安装rzsz 软件包
daizj
linuxszrz
1、下载软件 rzsz-3.34.tar.gz。登录linux,用命令
wget http://freeware.sgi.com/source/rzsz/rzsz-3.48.tar.gz下载。
2、解压 tar zxvf rzsz-3.34.tar.gz
3、安装 cd rzsz-3.34 ; make posix 。注意:这个软件安装与常规的GNU软件不
- 读源码之:ArrayBlockingQueue
dieslrae
java
ArrayBlockingQueue是concurrent包提供的一个线程安全的队列,由一个数组来保存队列元素.通过
takeIndex和
putIndex来分别记录出队列和入队列的下标,以保证在出队列时
不进行元素移动.
//在出队列或者入队列的时候对takeIndex或者putIndex进行累加,如果已经到了数组末尾就又从0开始,保证数
- C语言学习九枚举的定义和应用
dcj3sjt126com
c
枚举的定义
# include <stdio.h>
enum WeekDay
{
MonDay, TuesDay, WednesDay, ThursDay, FriDay, SaturDay, SunDay
};
int main(void)
{
//int day; //day定义成int类型不合适
enum WeekDay day = Wedne
- Vagrant 三种网络配置详解
dcj3sjt126com
vagrant
Forwarded port
Private network
Public network
Vagrant 中一共有三种网络配置,下面我们将会详解三种网络配置各自优缺点。
端口映射(Forwarded port),顾名思义是指把宿主计算机的端口映射到虚拟机的某一个端口上,访问宿主计算机端口时,请求实际是被转发到虚拟机上指定端口的。Vagrantfile中设定语法为:
c
- 16.性能优化-完结
frank1234
性能优化
性能调优是一个宏大的工程,需要从宏观架构(比如拆分,冗余,读写分离,集群,缓存等), 软件设计(比如多线程并行化,选择合适的数据结构), 数据库设计层面(合理的表设计,汇总表,索引,分区,拆分,冗余等) 以及微观(软件的配置,SQL语句的编写,操作系统配置等)根据软件的应用场景做综合的考虑和权衡,并经验实际测试验证才能达到最优。
性能水很深, 笔者经验尚浅 ,赶脚也就了解了点皮毛而已,我觉得
- Word Search
hcx2013
search
Given a 2D board and a word, find if the word exists in the grid.
The word can be constructed from letters of sequentially adjacent cell, where "adjacent" cells are those horizontally or ve
- Spring4新特性——Web开发的增强
jinnianshilongnian
springspring mvcspring4
Spring4新特性——泛型限定式依赖注入
Spring4新特性——核心容器的其他改进
Spring4新特性——Web开发的增强
Spring4新特性——集成Bean Validation 1.1(JSR-349)到SpringMVC
Spring4新特性——Groovy Bean定义DSL
Spring4新特性——更好的Java泛型操作API
Spring4新
- CentOS安装配置tengine并设置开机启动
liuxingguome
centos
yum install gcc-c++
yum install pcre pcre-devel
yum install zlib zlib-devel
yum install openssl openssl-devel
Ubuntu上可以这样安装
sudo aptitude install libdmalloc-dev libcurl4-opens
- 第14章 工具函数(上)
onestopweb
函数
index.html
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/
- Xelsius 2008 and SAP BW at a glance
blueoxygen
BOXelsius
Xelsius提供了丰富多样的数据连接方式,其中为SAP BW专属提供的是BICS。那么Xelsius的各种连接的优缺点比较以及Xelsius是如何直接连接到BEx Query的呢? 以下Wiki文章应该提供了全面的概览。
http://wiki.sdn.sap.com/wiki/display/BOBJ/Xcelsius+2008+and+SAP+NetWeaver+BW+Co
- oracle表空间相关
tongsh6
oracle
在oracle数据库中,一个用户对应一个表空间,当表空间不足时,可以采用增加表空间的数据文件容量,也可以增加数据文件,方法有如下几种:
1.给表空间增加数据文件
ALTER TABLESPACE "表空间的名字" ADD DATAFILE
'表空间的数据文件路径' SIZE 50M;
&nb
- .Net framework4.0安装失败
yangjuanjava
.netwindows
上午的.net framework 4.0,各种失败,查了好多答案,各种不靠谱,最后终于找到答案了
和Windows Update有关系,给目录名重命名一下再次安装,即安装成功了!
下载地址:http://www.microsoft.com/en-us/download/details.aspx?id=17113
方法:
1.运行cmd,输入net stop WuAuServ
2.点击开