- P3489 [POI2009] WIE-Hexer
summ1ts
算法c++图论dijkstra状态压缩
*原题链接*最短路+状态压缩不愧是POI的题,看题面知道要求加了一些限制的最短路,看数据范围很容易想到状态压缩。求解最短路就用堆优化dijkstra好了。至于状态压缩,我们对原数组再开一维,表示此时“剑的集合”,相应的数组也要多开一维。由于此时的最短路有状态的限制,所以我们要用三元组来维护,如果不想写结构体也可以pair,int>。输入时存储边上的“怪物集合”,以及一个村庄的“铁匠集合”,在来到新
- P2865 [USACO06NOV] Roadblocks G(洛谷)(次短路)
叶子清不青
算法
开一个二维数组dis[N][2]分别记录最短路和次短路即可。dijkstra和spfa均可,推荐spfa。//dijkstra#includeusingnamespacestd;constintN=1e5+5;typedeflonglongll;typedefpairPII;intn,m,k;intT;priority_queue,greater>q;structnode{inte,w;};vec
- P2865 [USACO06NOV]路障Roadblocks
dianshu0741
次短路模板题吧题意已经非常裸了:求无向图的1到n次短路。直接套用最短路(dijkstra)的主要框架。但在这个的基础上添加另外一个数组dist2。走到一条边的时候来三个判定:dist[u]+weightdist[v]&&dist[u]+weightrhs.d;}};voidlink(intu,intv,intw){e[++tot]=(Edges){head[u],v,w};head[u]=tot;
- P4779 【模板】单源最短路径(堆优化dijkstra)
summ1ts
一些模版算法图论最短路dijkstra堆
堆优化dijkstra,时间复杂度,我个人写习惯的模版。#includeusingnamespacestd;#definePIIpair#definefifirst#definesesecondconstintN=2e5+10;intread(){intx=0,f=1;charch=getchar();while(!isdigit(ch)){if(ch=='-')f=-1;ch=getchar()
- 运筹学——图论与最短距离(Python实现)(2),2024年最新Python高级面试framework
m0_60575487
2024年程序员学习图论python面试
适用于wij≥0,给出了从vs到任意一个点vj的最短路。Dijkstra算法是在1959年提出来的。目前公认,在所有的权wij≥0时,这个算法是寻求最短路问题最好的算法。并且,这个算法实际上也给出了寻求从一个始定点vs到任意一个点vj的最短路。2案例1——贪心算法实现==============2.1旅行商问题(TSP)**旅行商问题(TravelingSalesmanProblem,TSP)**
- 图论篇--代码随想录算法训练营第五十八天打卡|拓扑排序,dijkstra(朴素版)
热爱编程的OP
leetcode算法图论数据结构c++
拓扑排序题目链接:117.软件构建题目描述:某个大型软件项目的构建系统拥有N个文件,文件编号从0到N-1,在这些文件中,某些文件依赖于其他文件的内容,这意味着如果文件A依赖于文件B,则必须在处理文件A之前处理文件B(0#include#include#includeusingnamespacestd;intmain(){intm,n,s,t;cin>>n>>m;vectorinDegree(n,0
- 代码随想录训练营 Day58打卡 图论part08 拓扑排序 dijkstra(朴素版)
那一抹阳光多灿烂
图论力扣图论算法python数据结构
代码随想录训练营Day58打卡图论part08一、拓扑排序例题:卡码117.软件构建题目描述某个大型软件项目的构建系统拥有N个文件,文件编号从0到N-1,在这些文件中,某些文件依赖于其他文件的内容,这意味着如果文件A依赖于文件B,则必须在处理文件A之前处理文件B(0<=A,B<=N-1)。请编写一个算法,用于确定文件处理的顺序。输入描述第一行输入两个正整数N,M。表示N个文件之间拥有M条依赖关系。
- C语言-数据结构 无向图迪杰斯特拉算法(Dijkstra)邻接矩阵存储
Happy鱿鱼
算法c语言数据结构
在迪杰斯特拉中,相比普利姆算法,是从顶点出发的一条路径不断的寻找最短路径,在实现的时候需要创建三个辅助数组,记录算法的关键操作,分别是Visited[MAXVEX]记录顶点是否被访问,教材上写的final数组但作用是一样的,然后第二个数组是TmpDistance[MAXVEX],教材使用的D数组,命名语义化较弱不太好理解,实际用途与TmpDistance一样的,用于记录算法过程中,当前顶点到达邻接
- Floyd算法求最短路径
阿轩不熬夜~~
算法学习c++数据结构
目录一.Floyd算法介绍二.算法实现一.邻接矩阵介绍二.过程简述三.Floyd核心代码三.例题分析一.B3647【模板】Floyd.二.P2835刻录光盘四.Floyd算法的优缺点一.Floyd算法介绍Floyd算法又称为插点法,是一种利用动态规划的思想寻找给定的加权图中多源点之间最短路径的算法,与Dijkstra算法类似。该算法名称以创始人之一、1978年图灵奖获得者、斯坦福大学计算机科学系教
- POJ 1062 : 昂贵的聘礼 - 最短路Dijkstra+枚举(难)
bookybooky
图论最短路Dijsktrapojzoj图论
dijkstra处理权值非负情形,最近才开始看最短路。题目大意:(中文题容易理解)大致就是说,最终要得到酋长的许诺,每件物品可能有其他物品(1件)能让此物品价格优惠,你可通过交易获得物品从而以最少金钱达到酋长许诺。交易受到“等级限制”。其中的等级限制处理需要一定的技巧,细节一定要处理好!输入:(单Case输入)第一行两个整数M,N(1>30)-1足够,邻接矩阵用int也足够,并不像DISCUSS中
- 最短路算法一
halcyonfreed
算法
2024061819:33朴素版Dijkstra47:00Heap优化版1:04:00Bellman-ford最短路算法——5种!!!考察重点:不会考算法证明,这里不讲了,重点是实现+抽象1.如何建图——如何定义点边,抽象成一个图问题Prim/i/,kruskal是最小生成树算法不是prime/ai/质数1.是么时候用?方法n图的node数m边数单源:只有一个起点,求从1个点到其他所有点/第n号点
- 算法训练营|图论第9天 dijkstra(堆优化),bellman_ford
人间温柔观察者
算法图论
题目:dijkstra(堆优化)题目链接:47.参加科学大会(第六期模拟笔试)(kamacoder.com)代码:#includeusingnamespacestd;classmycomparison{public:booloperator()(constpair&lhs,constpair&rhs){returnlhs.second>rhs.second;}};structEdge{intto;
- 代码随想录算法训练营第六十五天 | dijkstra(堆优化版)精讲、Bellman_ford 算法精讲、复习
Danny_8
算法java数据结构图论
dijkstra(堆优化版)精讲—卡码网:47.参加科学大会题目链接:https://kamacoder.com/problempage.php?pid=1047文档讲解:https://programmercarl.com/kamacoder/0047.%E5%8F%82%E4%BC%9Adijkstra%E5%A0%86.html思路当节点数多,边数少(稀疏图)时,可以考虑从边的角度出发,用堆
- FFmpeg 7.0 版本 “Dijkstra”的特点概述
Codec Conductor
FFmpegffmpegFFmpeg音视频
FFmpeg7.0FFmpeg官网:https://ffmpeg.org/FFmpeg官网更新日志,2024.4.5号发布代号"Dijkstra"的7.0版本的FFmpeg,如下截图:为什么叫Dijkstra“Dijkstra”指的是艾兹格·戴克斯特拉(EdsgerWybeDijkstra),他是一位荷兰计算机科学家,对计算机科学领域做出了巨大贡献。戴克斯特拉最著名的成就之一是发明了最短路径算法,
- Python高效实现Dijkstra算法求解单源最短路径问题
清水白石008
pythonPython题库python算法网络
Python高效实现Dijkstra算法求解单源最短路径问题在Python面试中,考官通常会关注候选人的编程能力、问题解决能力以及对Python语言特性的理解。Dijkstra算法是一种经典的图算法,用于求解单源最短路径问题。本文将详细介绍如何实现Dijkstra算法,确保代码实用性强,条理清晰,操作性强。1.引言Dijkstra算法由荷兰计算机科学家EdsgerDijkstra于1956年提出,
- 刷题Day64|Floyd 算法精讲:97. 小明逛公园、A * 算法精讲:127. 骑士的攻击
风啊雨
算法
Floyd算法精讲解决多源最短路问题,即求多个起点到多个终点的多条最短路径。dijkstra朴素版、dijkstra堆优化、Bellman算法、Bellman队列优化(SPFA)都是单源最短路,即只能有一个起点。Floyd算法对边的权值正负没有要求,都可以处理。思路:核心思想是动态规划。分两种情况:(1)节点i到节点j的最短路径经过节点k:grid[i][j][k]=grid[i][k][k-1]
- 一文搞懂戴克斯特拉算法-dijkstra
somenzz
算法数据结构pythondijkstra贪心算法
大学学习数据结构那会,当时记得终于把dijkstra算法搞明白了,但是今天碰到的时候,大脑又是一片空白,于是我就又学习了下,把自己的理解写下来,希望你也可以通过本文搞懂dijkstra算法。dijkstra的起源dijkstra已经62岁了,是由荷兰计算机科学家艾兹赫尔·戴克斯特拉在1956年制造,并于3年后在期刊上发表,在2001年的采访中[1]他说到:从鹿特丹到格罗宁根的最短路径是什么?实际上
- 算法训练营|图论第8天 拓扑排序 dijkstra
人间温柔观察者
算法图论数据结构
题目:拓扑排序题目链接:117.软件构建(kamacoder.com)代码:#include#includeusingnamespacestd;intmain(){intn,m;cin>>n>>m;vectorinDegree(n,0);unordered_map>myMap;vectorresult;for(inti=0;i>s>>t;inDegree[t]++;myMap[s].push_ba
- 迪杰斯特拉(Dijkstra's )算法——解决带权有向无向图最短路径
一条晒干的咸魚
数据结构与算法算法
迪杰斯特拉算法(Dijkstra'sAlgorithm),又称为狄克斯特拉算法,是一种用于解决带权重有向图或无向图最短路径问题的算法。该算法由荷兰计算机科学家艾兹赫尔·狄克斯特拉在1956年发明,是一种广泛应用于网络路由和其他领域的算法。在2001年的一次采访中,Dijkstra博士透露了他设计这个算法的起因和过程:从Rotterdam到Groningen的最短路线是什么?我花了大概20分钟时间设
- 代码随想录算法训练营第58天| 图论 拓扑排序 dijkstra算法
煤球小黑
算法图论数据结构
拓扑排序:听起来是排序实际上是图论问题。对于一个有向图,把这个有向图转化成线性的排序,就叫拓扑排序。实际上是按先后顺序输出需要处理的事件。实现拓扑排序有两种方法,一种是BFS,另一种是DFS。如果要使用BFS,可以先通过入度为0判断起点是哪个点,只要遍历一遍所有边计算所有点的入度就可以找到起点了。在将该节点加入结果集之后删除,继续寻找集合中入度为0的点加入结果集然后再删除,所以如果出现多个入度为零
- day59-graph theory-part09-8.30
bbrruunnoo
python开发语言算法
tasksfortoday:1.digkstra堆优化版47.参加科学大会2.bellman_ford算法94.城市间货物运输I---------------------------------------------------------------------------------1.dijkstra堆优化版Thisisanoptimizationforthevanilladijkstra
- 打卡第59天-------图论
感谢上Di_123
前端算法题图论
加油!不要放弃,交托给上Di,求shen保守我的平安与顺利。一、dijkstra(堆优化版)精讲代码随想录二、Bellman_ford算法精讲代码随想录
- 【图论】最短路算法
叫我胡萝北
算法图论
【图论】最短路算法文章目录【图论】最短路算法1.Dijkstra2.Bellman-Ford3.Floyd4.A*5.matlab求最短路今天是图论的学习,就从最短路算法开始叭1.DijkstraDijkstra算法是典型的单源最短路算法,即求图中一个点到其他所有点的最短路径的算法,时间复杂度O(n2)O(n^2)O(n2)Dijkstra算法算是贪心思想实现的,图不能有负权边,其核心要点为:每次
- matlab中迪杰斯特拉算法,dijkstra算法(迪杰斯特拉算法)
肖宏辉
matlab中迪杰斯特拉算法
单源最短路径算法——Dijkstra算法(迪杰斯特拉算法)一综述Dijkstra算法(迪杰斯特拉算法)主要是用于求解有向图中单源最短路径问题.其本质是基于贪心策略的(具体见下文).其基本原理如下:(1)初始化:集合vertex_set初始为{sourc...Dijkstra【迪杰斯特拉算法】有关最短路径的最后一个算法——Dijkstra迪杰斯特拉算法是由荷兰计算机科学家迪杰斯特
- 简单の暑假总结——最小生成树
C2024XSC184
笔记
6.1最小生成树我们先来了解一下最小生成树的概念:我们定义无向连通图的最小生成树(MinimumSpanningTree,MST)为边权和最小的生成树(树也叫做生成树)。——OIWiki我们举一个例子:在这样一个带权无向图中,它的最小生成树如下图所示,其权值为141414我们有222种算法来解决这个问题6.2Prim算法Prim算法无论是本质上还是代码上都与Dijkstra高度类似,本质上还是一个
- Dijkstra(c++)
少年负剑去
基础算法每日算法题c++java开发语言
迪杰斯特拉算法(Dijkstra)是由荷兰计算机科学家狄克斯特拉于1959年提出的,因此又叫狄克斯特拉算法。是从一个顶点到其余各顶点的最短路径算法,解决的是有权图中最短路径问题。迪杰斯特拉算法主要特点是从起始点开始,采用贪心算法的策略,每次遍历到始点距离最近且未访问过的顶点的邻接节点,直到扩展到终点为止。同时dijkstra算法主要用于解决单源最短路问题(边权为正数),其可以分为两种版本,两种版本
- 【数据结构】最短路径
游向大厂的咸鱼
浅谈C++数据结构算法
在图论中,最短路径问题是一个经典且重要的问题,它用于寻找两个顶点之间距离最短的路径。本文将详细介绍两种常用的最短路径算法——Dijkstra算法和Bellman-Ford算法的原理,并提供C语言代码示例,演示它们的实现方式及应用场景。一、Dijkstra算法Dijkstra算法是一种贪心算法,用于求解带有非负权值的加权图的单源最短路径问题。它的基本思想是,从起始顶点开始,逐步扩展已经找到的最短路径
- 【算法基础实验】排序-最小索引优先队列IndexMinPQ
Greyplayground
算法
回顾最小优先队列MinPQ理论知识概述在算法和数据结构中,优先队列是一种特殊的队列数据结构,每个元素都有一个优先级。当你从优先队列中删除元素时,通常会删除具有最高(或最低)优先级的元素。在最小优先队列中,优先级最低的元素最先被删除。索引最小优先队列是优先队列的一种变体,允许你通过索引(或键)快速地更新、插入、删除和访问最小元素。它的典型应用包括网络流、图算法(如Dijkstra最短路径算法)等。基
- 通过dijkstra算法解决城堡问题
likepandas
算法贪心算法
问题描述:你知道黑暗城保有N个房间(1≤N≤1000),M条可以制造的双向通道,以及每条通道的长度。城堡是树形的并且满足下面的条件:如果所有的通道都被修建.设D[i]为第i号房间与第1号房间的最短路径长度;而S[i]为实际修建的树形城保中第i号房间与第1号房间的路径长度;要求对于所有整数i(1#include#includeusingnamespacestd;//0x3f3f3f3f的十进制为10
- Dijkstra算法C++
江淮子弟
算法刷刷刷算法c++图论数据结构贪心算法
系列文章目录Dijkstra算法Ballman_ford算法Spfa算法Floyd算法文章目录系列文章目录一、朴素版本二、堆优化版本总结一、朴素版本时间复杂度:$O(n^2)$数据量比较密集时:数据存储用邻接矩阵g[][]较大值MAX选用0x3f3f3f3f:32bit中通常int最大值为0x7fffffff,但是此处需要对MAX进行加法,0x7fffffff+3为负数,显然不符合最短路径算法中的
- [黑洞与暗粒子]没有光的世界
comsci
无论是相对论还是其它现代物理学,都显然有个缺陷,那就是必须有光才能够计算
但是,我相信,在我们的世界和宇宙平面中,肯定存在没有光的世界....
那么,在没有光的世界,光子和其它粒子的规律无法被应用和考察,那么以光速为核心的
&nbs
- jQuery Lazy Load 图片延迟加载
aijuans
jquery
基于 jQuery 的图片延迟加载插件,在用户滚动页面到图片之后才进行加载。
对于有较多的图片的网页,使用图片延迟加载,能有效的提高页面加载速度。
版本:
jQuery v1.4.4+
jQuery Lazy Load v1.7.2
注意事项:
需要真正实现图片延迟加载,必须将真实图片地址写在 data-original 属性中。若 src
- 使用Jodd的优点
Kai_Ge
jodd
1. 简化和统一 controller ,抛弃 extends SimpleFormController ,统一使用 implements Controller 的方式。
2. 简化 JSP 页面的 bind, 不需要一个字段一个字段的绑定。
3. 对 bean 没有任何要求,可以使用任意的 bean 做为 formBean。
使用方法简介
- jpa Query转hibernate Query
120153216
Hibernate
public List<Map> getMapList(String hql,
Map map) {
org.hibernate.Query jpaQuery = entityManager.createQuery(hql);
if (null != map) {
for (String parameter : map.keySet()) {
jp
- Django_Python3添加MySQL/MariaDB支持
2002wmj
mariaDB
现状
首先,
[email protected] 中默认的引擎为 django.db.backends.mysql 。但是在Python3中如果这样写的话,会发现 django.db.backends.mysql 依赖 MySQLdb[5] ,而 MySQLdb 又不兼容 Python3 于是要找一种新的方式来继续使用MySQL。 MySQL官方的方案
首先据MySQL文档[3]说,自从MySQL
- 在SQLSERVER中查找消耗IO最多的SQL
357029540
SQL Server
返回做IO数目最多的50条语句以及它们的执行计划。
select top 50
(total_logical_reads/execution_count) as avg_logical_reads,
(total_logical_writes/execution_count) as avg_logical_writes,
(tot
- spring UnChecked 异常 官方定义!
7454103
spring
如果你接触过spring的 事物管理!那么你必须明白 spring的 非捕获异常! 即 unchecked 异常! 因为 spring 默认这类异常事物自动回滚!!
public static boolean isCheckedException(Throwable ex)
{
return !(ex instanceof RuntimeExcep
- mongoDB 入门指南、示例
adminjun
javamongodb操作
一、准备工作
1、 下载mongoDB
下载地址:http://www.mongodb.org/downloads
选择合适你的版本
相关文档:http://www.mongodb.org/display/DOCS/Tutorial
2、 安装mongoDB
A、 不解压模式:
将下载下来的mongoDB-xxx.zip打开,找到bin目录,运行mongod.exe就可以启动服务,默
- CUDA 5 Release Candidate Now Available
aijuans
CUDA
The CUDA 5 Release Candidate is now available at http://developer.nvidia.com/<wbr></wbr>cuda/cuda-pre-production. Now applicable to a broader set of algorithms, CUDA 5 has advanced fe
- Essential Studio for WinRT网格控件测评
Axiba
JavaScripthtml5
Essential Studio for WinRT界面控件包含了商业平板应用程序开发中所需的所有控件,如市场上运行速度最快的grid 和chart、地图、RDL报表查看器、丰富的文本查看器及图表等等。同时,该控件还包含了一组独特的库,用于从WinRT应用程序中生成Excel、Word以及PDF格式的文件。此文将对其另外一个强大的控件——网格控件进行专门的测评详述。
网格控件功能
1、
- java 获取windows系统安装的证书或证书链
bewithme
windows
有时需要获取windows系统安装的证书或证书链,比如说你要通过证书来创建java的密钥库 。
有关证书链的解释可以查看此处 。
public static void main(String[] args) {
SunMSCAPI providerMSCAPI = new SunMSCAPI();
S
- NoSQL数据库之Redis数据库管理(set类型和zset类型)
bijian1013
redis数据库NoSQL
4.sets类型
Set是集合,它是string类型的无序集合。set是通过hash table实现的,添加、删除和查找的复杂度都是O(1)。对集合我们可以取并集、交集、差集。通过这些操作我们可以实现sns中的好友推荐和blog的tag功能。
sadd:向名称为key的set中添加元
- 异常捕获何时用Exception,何时用Throwable
bingyingao
用Exception的情况
try {
//可能发生空指针、数组溢出等异常
} catch (Exception e) {
 
- 【Kafka四】Kakfa伪分布式安装
bit1129
kafka
在http://bit1129.iteye.com/blog/2174791一文中,实现了单Kafka服务器的安装,在Kafka中,每个Kafka服务器称为一个broker。本文简单介绍下,在单机环境下Kafka的伪分布式安装和测试验证 1. 安装步骤
Kafka伪分布式安装的思路跟Zookeeper的伪分布式安装思路完全一样,不过比Zookeeper稍微简单些(不
- Project Euler
bookjovi
haskell
Project Euler是个数学问题求解网站,网站设计的很有意思,有很多problem,在未提交正确答案前不能查看problem的overview,也不能查看关于problem的discussion thread,只能看到现在problem已经被多少人解决了,人数越多往往代表问题越容易。
看看problem 1吧:
Add all the natural num
- Java-Collections Framework学习与总结-ArrayDeque
BrokenDreams
Collections
表、栈和队列是三种基本的数据结构,前面总结的ArrayList和LinkedList可以作为任意一种数据结构来使用,当然由于实现方式的不同,操作的效率也会不同。
这篇要看一下java.util.ArrayDeque。从命名上看
- 读《研磨设计模式》-代码笔记-装饰模式-Decorator
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
import java.io.BufferedOutputStream;
import java.io.DataOutputStream;
import java.io.FileOutputStream;
import java.io.Fi
- Maven学习(一)
chenyu19891124
Maven私服
学习一门技术和工具总得花费一段时间,5月底6月初自己学习了一些工具,maven+Hudson+nexus的搭建,对于maven以前只是听说,顺便再自己的电脑上搭建了一个maven环境,但是完全不了解maven这一强大的构建工具,还有ant也是一个构建工具,但ant就没有maven那么的简单方便,其实简单点说maven是一个运用命令行就能完成构建,测试,打包,发布一系列功
- [原创]JWFD工作流引擎设计----节点匹配搜索算法(用于初步解决条件异步汇聚问题) 补充
comsci
算法工作PHP搜索引擎嵌入式
本文主要介绍在JWFD工作流引擎设计中遇到的一个实际问题的解决方案,请参考我的博文"带条件选择的并行汇聚路由问题"中图例A2描述的情况(http://comsci.iteye.com/blog/339756),我现在把我对图例A2的一个解决方案公布出来,请大家多指点
节点匹配搜索算法(用于解决标准对称流程图条件汇聚点运行控制参数的算法)
需要解决的问题:已知分支
- Linux中用shell获取昨天、明天或多天前的日期
daizj
linuxshell上几年昨天获取上几个月
在Linux中可以通过date命令获取昨天、明天、上个月、下个月、上一年和下一年
# 获取昨天
date -d 'yesterday' # 或 date -d 'last day'
# 获取明天
date -d 'tomorrow' # 或 date -d 'next day'
# 获取上个月
date -d 'last month'
#
- 我所理解的云计算
dongwei_6688
云计算
在刚开始接触到一个概念时,人们往往都会去探寻这个概念的含义,以达到对其有一个感性的认知,在Wikipedia上关于“云计算”是这么定义的,它说:
Cloud computing is a phrase used to describe a variety of computing co
- YII CMenu配置
dcj3sjt126com
yii
Adding id and class names to CMenu
We use the id and htmlOptions to accomplish this. Watch.
//in your view
$this->widget('zii.widgets.CMenu', array(
'id'=>'myMenu',
'items'=>$this-&g
- 设计模式之静态代理与动态代理
come_for_dream
设计模式
静态代理与动态代理
代理模式是java开发中用到的相对比较多的设计模式,其中的思想就是主业务和相关业务分离。所谓的代理设计就是指由一个代理主题来操作真实主题,真实主题执行具体的业务操作,而代理主题负责其他相关业务的处理。比如我们在进行删除操作的时候需要检验一下用户是否登陆,我们可以删除看成主业务,而把检验用户是否登陆看成其相关业务
- 【转】理解Javascript 系列
gcc2ge
JavaScript
理解Javascript_13_执行模型详解
摘要: 在《理解Javascript_12_执行模型浅析》一文中,我们初步的了解了执行上下文与作用域的概念,那么这一篇将深入分析执行上下文的构建过程,了解执行上下文、函数对象、作用域三者之间的关系。函数执行环境简单的代码:当调用say方法时,第一步是创建其执行环境,在创建执行环境的过程中,会按照定义的先后顺序完成一系列操作:1.首先会创建一个
- Subsets II
hcx2013
set
Given a collection of integers that might contain duplicates, nums, return all possible subsets.
Note:
Elements in a subset must be in non-descending order.
The solution set must not conta
- Spring4.1新特性——Spring缓存框架增强
jinnianshilongnian
spring4
目录
Spring4.1新特性——综述
Spring4.1新特性——Spring核心部分及其他
Spring4.1新特性——Spring缓存框架增强
Spring4.1新特性——异步调用和事件机制的异常处理
Spring4.1新特性——数据库集成测试脚本初始化
Spring4.1新特性——Spring MVC增强
Spring4.1新特性——页面自动化测试框架Spring MVC T
- shell嵌套expect执行命令
liyonghui160com
一直都想把expect的操作写到bash脚本里,这样就不用我再写两个脚本来执行了,搞了一下午终于有点小成就,给大家看看吧.
系统:centos 5.x
1.先安装expect
yum -y install expect
2.脚本内容:
cat auto_svn.sh
#!/bin/bash
- Linux实用命令整理
pda158
linux
0. 基本命令 linux 基本命令整理
1. 压缩 解压 tar -zcvf a.tar.gz a #把a压缩成a.tar.gz tar -zxvf a.tar.gz #把a.tar.gz解压成a
2. vim小结 2.1 vim替换 :m,ns/word_1/word_2/gc  
- 独立开发人员通向成功的29个小贴士
shoothao
独立开发
概述:本文收集了关于独立开发人员通向成功需要注意的一些东西,对于具体的每个贴士的注解有兴趣的朋友可以查看下面标注的原文地址。
明白你从事独立开发的原因和目的。
保持坚持制定计划的好习惯。
万事开头难,第一份订单是关键。
培养多元化业务技能。
提供卓越的服务和品质。
谨小慎微。
营销是必备技能。
学会组织,有条理的工作才是最有效率的。
“独立
- JAVA中堆栈和内存分配原理
uule
java
1、栈、堆
1.寄存器:最快的存储区, 由编译器根据需求进行分配,我们在程序中无法控制.2. 栈:存放基本类型的变量数据和对象的引用,但对象本身不存放在栈中,而是存放在堆(new 出来的对象)或者常量池中(字符串常量对象存放在常量池中。)3. 堆:存放所有new出来的对象。4. 静态域:存放静态成员(static定义的)5. 常量池:存放字符串常量和基本类型常量(public static f