- 蓝桥杯第十四届C++C组
bug~bug~
蓝桥杯蓝桥杯c++c语言
目录三国游戏填充翻转【单调队列优化DP】子矩阵【快速幂、欧拉函数】互质数的个数【tire树】异或和之差【质因数分解】公因数匹配子树的大小三国游戏题目描述小蓝正在玩一款游戏。游戏中魏蜀吴三个国家各自拥有一定数量的士兵X,Y,Z(一开始可以认为都为0)。游戏有n个可能会发生的事件,每个事件之间相互独立且最多只会发生一次,当第i个事件发生时会分别让X,Y,Z增加Ai,Bi,Ci。当游戏结束时(所有事件的
- python 实现eulers totient欧拉方程算法
luthane
算法python开发语言
eulerstotient欧拉方程算法介绍欧拉函数(Euler’sTotientFunction),通常表示为(),是一个与正整数相关的函数,它表示小于或等于的正整数中与互质的数的数目。欧拉函数在数论和密码学中有广泛的应用。欧拉函数的性质1.**对于质数,有φ(p)=p−1∗∗φ(p)=p−1^{**}φ(p)=p−1∗∗。2.**如果是质数的次幂,即n=pkn=p^kn=pk,则φ(n)=pk−
- python 实现euler modified变形欧拉法算法
luthane
python算法开发语言
eulermodified变形欧拉法算法介绍EulerModified(改进)变形欧拉法算法,也被称为欧拉修改法或修正欧拉法(EulerModifiedMethod),是一种用于数值求解微分方程的改进方法。这种方法在传统欧拉法的基础上进行了优化,以减少误差。基本原理欧拉法是一种通过逐步逼近来计算函数值的方法,但在某些情况下,传统的欧拉法可能会引入较大的误差。改进的欧拉法通过使用平均斜率来减小误差。
- 刚体运动描述:欧拉角与四元数
FL17171314
算法
姿态角偏差主要有三种描述方式:欧拉角误差,轴角误差和四元数误差。在机器人学中,刚体的运动描述是非常重要的,特别是当我们需要精确控制机器人的姿态时。欧拉角和四元数是两种常用的描述刚体在三维空间中旋转的方法。下面将分别介绍这两种方法并给出其特点。欧拉角定义与特点:定义:欧拉角是通过绕一个三维坐标系的三个轴依次旋转来定义的,通常按照某个固定的旋转顺序(如XYZ、ZYX等)进行。表示:欧拉角由三个角度组成
- Ansible Tower与AWX:构建可视化的运维自动化解决方案
勤劳兔码农
运维ansible自动化
AnsibleTower与AWX:构建可视化的运维自动化解决方案引言随着企业数字化转型的深入,运维自动化逐渐成为IT管理的重要组成部分。Ansible作为一种简单、灵活且功能强大的自动化工具,广泛应用于配置管理、应用部署和任务自动化中。然而,在大规模、复杂的企业环境中,单纯使用Ansible命令行来管理和执行任务,难以满足对自动化流程的可视化、可审计和权限管理等高级需求。为了解决这些问题,RedH
- c++ pcl 法向量 转机器人欧拉角
冰块啫喱水
机器人算法人工智能
一个向量是无法计算出机器人的姿态的,可以将该法向量作为机器人的z方向向量,然后指定x方向向量,一般为(0,0,-1)用于焊接姿态,具体需要什么姿态调节x的向量即可,然后根据右手定则知道y方向向量,最后调用eulerAngles方法计算出欧拉角,具体代码如下:1,向量转换矩阵Eigen::Matrix4fpclfunction::vectorToMatrix(constEigen::Vector3f
- 我们眼中的世界到底是什么样子——读《事实》有感
4a177c0f3414
受朋友推荐,最近读了一本书,《事实》。作为比尔·盖茨送给全美大学生的毕业礼物:一人一本《事实》。我觉得有必要认真通读一遍,看看为何魅力之处。严格的讲,我只看了一半,剩下的靠听书完成。读完之后,我重新审视了一遍自己及周围的人,我们处在一种什么样的状态中,以一种什么样的眼光看世界。本书作者:瑞典人汉斯·罗斯林,欧拉·罗斯林,安娜·罗斯林·罗朗德。本书先是通过调查问卷的形式展开,然后针对调查的结果,阐述
- 第五章 opengl之摄像机
Re_view
OPGENGL线性代数矩阵算法
OpenGL摄像机摄像机/观察空间LookAt矩阵自由移动移动速度视角移动欧拉角鼠标输入缩放补充:摄像机类摄像机OpenGL本身没有摄像机(Camera)的概念,但我们可以通过把场景中的所有物体往相反方向移动的方式来模拟出摄像机,产生一种我们在移动的感觉,而不是场景在移动。摄像机/观察空间首先获取摄像机位置,就是世界空间中的一个指向摄像机位置的向量。glm::vec3cameraPos=glm::
- 2023-07-28
2023梦启支教团张耀文
感悟数学之美,分享数独之乐——中国矿业大学梦启支教团开展趣味数独课程7月27日下午3时,中国矿业大学梦启支教团在贵州省金沙县第九小学(金沙县彩虹小学)开展“兴趣爱好培养班”系列课程,本次课程讲述趣味数独。该课程旨在让学生们教会孩子们数独的技巧方法,引导学生喜欢数独、爱上数独。课程由梦启支教团成员于子文主讲,梦启三班全员参加。课程伊始,于子文老师首先介绍欧拉研究的拉丁方阵,向学生们讲述数独的起源,激
- 2024计算机保研真题与面试资料整理(自己整理)
Better Rose
保研面试算法职场和发展
目录1数据结构1.1考察范围1.2常见问题1.3遇到的问答*2.1考察范围2.2常见问题2.3遇到的问答*3计算机网络3.1考察范围3.2常见问题3.3遇到的问答*4计算机语言4.1考察范围4.2常见问题4.3遇到的问答*5其他专业课5.1考察范围5.2常见问题5.3遇到的问答*1数据结构1.1考察范围堆、栈、队列、链表等数据结构树:红黑树、二叉树的各类分支等图:欧拉图:哈密顿图查找算法、哈希算法
- 数学知识——欧拉函数、快速幂、扩展欧几里得算法
up-to-star
acwing算法基础课学习笔记
欧拉函数欧拉函数定义为ϕ(n)=1−n中与n互质的个数\phi(n)=1-n中与n互质的个数ϕ(n)=1−n中与n互质的个数,互质就是最大公约数是1。欧拉函数求解公式:将n分解质因数:n=p1a1+p2a2+...+pkakn=p_1^{a1}+p_2^{a2}+...+p_k^{ak}n=p1a1+p2a2+...+pkak,则ϕ(n)=n∗(1−1p1)∗(1−1p2)∗.....∗(1−1p
- openEuler—全球最具活力的操作系统开源社区之一
不要em0啦
开源人工智能linux华为
一、openEuler的身世openEuler的前身是华为的服务器操作系统EulerOS。为什么要叫Euler,可以追溯到1752年数学家欧拉所发现的欧拉公式。它将数学中几个重要的数字联系到了一起,在图论,复变函数等各个领域都有重大作用,是数学史上的里程碑。从欧拉公式的意义中,我们可以感觉到openEuler身上所携带的创新探索精神,以及成为里程碑式的操作系统开源社区的决心。从百年前数字之间的联系
- 【快速幂、欧拉函数】蓝桥杯第十四届---互质数的个数
bug~bug~
蓝桥杯蓝桥杯职场和发展
给定a,b,求1≤xusingnamespacestd;typedeflonglongLL;constintmod=998244353;LLquick_pow(LLa,LLb){LLres=1;while(b){if(b&1)res=res*a%mod;a=a*a%mod;b>>=1;}returnres;}LLeu(LLn){LLres=n;for(LLi=2;i1)res=res*(n-1)/
- 【欧拉函数+快速幂】第十四届蓝桥杯省赛C++ C组 Java A组/研究生组 Python 研究生组《互质数的个数》(C++)
北洋的霞洛
蓝桥杯历年真题蓝桥杯c++算法模板方法模式
【题目描述】给定a,b,求1≤x#include#includeusingnamespacestd;typedeflonglongLL;constintMOD=998244353;LLqmi(LLa,LLb){LLres=1;while(b){if(b&1)res=res*a%MOD;a=a*a%MOD;b>>=1;}returnres;}intmain(){LLa,b;cin>>a>>b;if(
- 孩子学习跟不上,到底是怎么回事?
王塞
图片发自App很多家长都说,陪孩子写作业就是一场灾难,为了学习写作业家里天天鸡飞狗跳,父母觉得孩子偷懒,白瞎了自己的良苦用心;孩子满足不了家长的期望,觉得力不从心,甚至自暴自弃……到底是哪里出了问题?每个父母都希望自己的孩子聪明乖巧,学业出色,有美好的未来。实际上,每个孩子天生都具有无限的潜力和一切美好的品质。巴哈欧拉说:人类好比富矿,蕴含无数珍藏,惟教育能掘而显之,使人类从中获益。父母是孩子的第
- 数学之函数的基础性内容的学习
待
大牛之路(数学)学习密码学
函数是一个很重要的内容无数的科学家为其进行前赴后继伽利略(比萨斜塔“高空抛物”),笛卡尔,牛顿,莱布尼兹,约翰伯努利,欧拉,傅里叶,迪利克雷(德国数学家,现代函数的定义者,官二代“提供了良好的学习环境”,)等等之类的,无数科学家都投入到其中的相关研究当中,同时函数是我们探索世界的一个重要工具。函数基本概念:迪利克雷出现了最为基础函数基本定义和其概念,x和y之间的对应关系,一个自变量只有一个因变量,
- Ansible-Tower web界面管理安装
阿亮说技术
linuxansibletower
Ansible-Towerweb界面管理安装Ansible-Tower介绍Ansible-Tower(之前叫做awx)是将ansible的指令界面化,简明直观,简单易用。Ansibke-tower其实就是一个图形化的任务调度,复杂服务部署,IT自动化的一个管理平台,属于发布配置管理系统,支持Api及界面操作,Django编写。Ansible-tower可以通过界面从github拉取最新playbo
- 欧拉函数
wancong3
数学算法
文章目录概念欧拉函数的公式欧拉函数的计算欧拉函数的性质概念欧拉函数φ(n)φ(n)φ(n)描述的是小于等于n的正整数2中与n互质的个数。先回顾一下互质的定义,互质是指两个正整数的最大公约数为1。所以不难得出,1和任何正整数互质;除1外任何正整数和它自己不可能互质;nnn和n+1n+1n+1互质。另外,除φ(1)=1φ(1)=1φ(1)=1外,欧拉函数满足φ(n)≤n−1φ(n)≤n-1φ(n)≤n
- 素数算法(普通求解,埃氏筛,欧拉筛)
晚•夜
算法学习算法
素数算法(常规求解,埃氏筛,欧拉筛)1.常规求解1.1原理解释1.2算法实现2.埃氏筛2.1原理解释2.2算法实现3.欧拉筛3.1原理解释3.2算法实现1.常规求解1.1原理解释枚举法是一种简单的求解素数的方法,其基本思想是从2开始逐个判断每个数字是否为素数。具体来说,对于一个待判断的数n,我们可以从2开始依次尝试将n除以小于等于n的开方的所有数,如果存在一个因子能够整除n,则n不是素数;否则n是
- Unity所有关于旋转的方法详解
ysn11111
unity游戏引擎
前言:欧拉角和四元数的简单描述我们在Inspector面板上看到的rotation其实是欧拉角,我们将Inspector面板设置成Debug模式,此时看到的localRotation才是四元数。Unity中的欧拉旋转是按照Z-X-Y顺规执行的旋转,一组欧拉旋转过程中,相对的轴向不会发生变化。Transform.Rotate(newVector3(30,60,30)),它代表执行了一组欧拉旋转,它相
- c语言小学生入门自学,小学生C语言编程入门书.pdf
練心
c语言小学生入门自学
第一节编程的魔力从一个神奇的数字说起——2147483647。2147483647是一个质数(也叫做素数,即只能被1和其本身整除的数)。发现这个质数的人是伟大的欧拉同学。1722年他在双目失明的情况,以惊人的毅力靠心算证明了2147483647是一个质数,堪称当时世界上已知的最大质数,他也因此获得了“数学英雄”的美名。现在通过计算机你只需要一秒钟就可以证明2147483647是一个质数⊙﹏⊙b汗1
- 【Crypto | CTF】RSA打法 集合
星盾网安
CTF安全密码学
天命:我发现题题不一样,已知跟求知的需求都不一样题目一:已知pqE,计算T,最后求D已知两个质数pq和公钥E,通过p和q计算出欧拉函数T,最后求私钥D【密码学|CTF】BUUCTFRSA-CSDN博客题目二:已知pqE,存在c,计算T,求出D,最后求m已知两个质数pq和公钥E,通过p和q计算出欧拉函数T,求出私钥,通过私钥解密密文c,得到明文m【Crypto|CTF】BUUCTFrsarsa1-C
- 【图论】欧拉回路
u小鬼
ACM23图论深度优先算法
前言你的qq密码是否在圆周率中出现?一个有意思的编码问题:假设密码是固定位数,设有nnn位,每位是数字0-9,那么这样最短的“圆周率”的长度是多少?或者说求一个最短的数字串定包含所有密码。理论一些定义:通过图中所有边恰好一次且行遍所有顶点的通路称为欧拉通路;通过图中所有边恰好一次且行遍所有顶点的回路称为欧拉回路;具有欧拉回路的无向图称为欧拉图;具有欧拉通路但不具有欧拉回路的无向图称为半欧拉图。求欧
- 洛谷 P2580 于是他错误的点名开始了
3分人生
题组哈希算法
题目背景XS中学化学竞赛组教练是一个酷爱炉石的人。他会一边搓炉石一边点名以至于有一天他连续点到了某个同学两次,然后正好被路过的校长发现了然后就是一顿欧拉欧拉欧拉(详情请见已结束比赛CON900)。题目描述这之后校长任命你为特派探员,每天记录他的点名。校长会提供化学竞赛学生的人数和名单,而你需要告诉校长他有没有点错名。(为什么不直接不让他玩炉石。)输入格式第一行一个整数n,表示班上人数。接下来n行,
- 1185. 单词游戏(欧拉路径)
Landing_on_Mars
#欧拉回路和欧拉路径游戏图论
活动-AcWing有N个盘子,每个盘子上写着一个仅由小写字母组成的英文单词。你需要给这些盘子安排一个合适的顺序,使得相邻两个盘子中,前一个盘子上单词的末字母等于后一个盘子上单词的首字母。请你编写一个程序,判断是否能达到这一要求。输入格式第一行包含整数T,表示共有T组测试数据。每组数据第一行包含整数N,表示盘子数量。接下来N行,每行包含一个小写字母字符串,表示一个盘子上的单词。一个单词可能出现多次。
- 欧拉筛详解(附个人思想注释)
Jared_devin
算法c++图论leetcode深度优先推荐算法排序算法
Ⅰ.介绍欧拉筛又叫线性筛,是三种质数筛中(暴力枚举,埃氏筛,欧拉筛)时间复杂度最小的,可以把问题时间复杂度优化到O(n),是求范围内素数最好用的算法。Ⅱ.个人的代码及注释:#include#include//包括memset初始化usingnamespacestd;constintN=2e5;intprime[N];//保存质数boolis_prime[N];//判断是否为质数,且全部初始化为0i
- P5440 【XR-2】奇迹 (大模拟dfs+欧拉筛板子+闰年)
why_not_fly
深度优先xr算法
传送门https://www.luogu.com.cn/problem/P5440相信奇迹的人,本身就和奇迹一样了不起。——笛亚《星游记》思路历程:很离谱的一题,在理论上并不困难,只要简单dfs+欧拉筛就能过。在一开始,我采用了倒着模拟的思路,用stoi函数,强转字符串,发现样例能跑,但是仍旧RE(现在仍未理解这样的原因),于是,我选择了另一种做法,反过来遍历。下面是代码:#include#inc
- 欧拉筛板子
why_not_fly
算法数据结构
造数组时间复杂度:O(n)查询:O(1)#includeusingnamespacestd;constintN=100000010;boolnums[N];longlongf[N],cot=0;intmain(){nums[1]=true;//1不是素数true不是素数longlongn=1e8;for(longlongi=2;i<=n;i++){if(!nums[i])f[cot++]=i;fo
- 蓝桥杯每日一题----素数筛
小西yu
蓝桥杯算法java
素数筛素数筛的作用是筛选出[2,N]范围内的所有素数,本次主要讲解两种方法,分别是埃氏筛和欧拉筛。证明时会提到唯一分解定理,如果不知道的小伙伴可以先去学一学,那我们开始啦!1.埃氏筛主要思想:当找到一个素数时,利用该素数把该素数的所有倍数筛掉。时间复杂度:O(nlog(log(n)))O(nlog(log(n)))O(nlog(log(n)))上代码,//每个数的最小质因子//pre[i]表示i的
- Unity EulerAngles欧拉角X轴问题
一男吃吃吃
项目中遇到需要获取和Inspector中一样的角度信息使用Transform.localEulerAngles时,Y和Z都没问题,但X轴在90°->270°的角度增加过程中会产生90°->0°->360°->270°的变化过程,有点手足无措,想了半天,应该是没有参考导致的,于是硬想了个山寨方法出来,应该有更高效和简便的方法来获取,如果你有,请不惜赐教,谢谢~!!usingUnityEngine;p
- 二分查找排序算法
周凡杨
java二分查找排序算法折半
一:概念 二分查找又称
折半查找(
折半搜索/
二分搜索),优点是比较次数少,查找速度快,平均性能好;其缺点是要求待查表为有序表,且插入删除困难。因此,折半查找方法适用于不经常变动而 查找频繁的有序列表。首先,假设表中元素是按升序排列,将表中间位置记录的关键字与查找关键字比较,如果两者相等,则查找成功;否则利用中间位置记录将表 分成前、后两个子表,如果中间位置记录的关键字大于查找关键字,则进一步
- java中的BigDecimal
bijian1013
javaBigDecimal
在项目开发过程中出现精度丢失问题,查资料用BigDecimal解决,并发现如下这篇BigDecimal的解决问题的思路和方法很值得学习,特转载。
原文地址:http://blog.csdn.net/ugg/article/de
- Shell echo命令详解
daizj
echoshell
Shell echo命令
Shell 的 echo 指令与 PHP 的 echo 指令类似,都是用于字符串的输出。命令格式:
echo string
您可以使用echo实现更复杂的输出格式控制。 1.显示普通字符串:
echo "It is a test"
这里的双引号完全可以省略,以下命令与上面实例效果一致:
echo Itis a test 2.显示转义
- Oracle DBA 简单操作
周凡杨
oracle dba sql
--执行次数多的SQL
select sql_text,executions from (
select sql_text,executions from v$sqlarea order by executions desc
) where rownum<81;
&nb
- 画图重绘
朱辉辉33
游戏
我第一次接触重绘是编写五子棋小游戏的时候,因为游戏里的棋盘是用线绘制的,而这些东西并不在系统自带的重绘里,所以在移动窗体时,棋盘并不会重绘出来。所以我们要重写系统的重绘方法。
在重写系统重绘方法时,我们要注意一定要调用父类的重绘方法,即加上super.paint(g),因为如果不调用父类的重绘方式,重写后会把父类的重绘覆盖掉,而父类的重绘方法是绘制画布,这样就导致我们
- 线程之初体验
西蜀石兰
线程
一直觉得多线程是学Java的一个分水岭,懂多线程才算入门。
之前看《编程思想》的多线程章节,看的云里雾里,知道线程类有哪几个方法,却依旧不知道线程到底是什么?书上都写线程是进程的模块,共享线程的资源,可是这跟多线程编程有毛线的关系,呜呜。。。
线程其实也是用户自定义的任务,不要过多的强调线程的属性,而忽略了线程最基本的属性。
你可以在线程类的run()方法中定义自己的任务,就跟正常的Ja
- linux集群互相免登陆配置
林鹤霄
linux
配置ssh免登陆
1、生成秘钥和公钥 ssh-keygen -t rsa
2、提示让你输入,什么都不输,三次回车之后会在~下面的.ssh文件夹中多出两个文件id_rsa 和 id_rsa.pub
其中id_rsa为秘钥,id_rsa.pub为公钥,使用公钥加密的数据只有私钥才能对这些数据解密 c
- mysql : Lock wait timeout exceeded; try restarting transaction
aigo
mysql
原文:http://www.cnblogs.com/freeliver54/archive/2010/09/30/1839042.html
原因是你使用的InnoDB 表类型的时候,
默认参数:innodb_lock_wait_timeout设置锁等待的时间是50s,
因为有的锁等待超过了这个时间,所以抱错.
你可以把这个时间加长,或者优化存储
- Socket编程 基本的聊天实现。
alleni123
socket
public class Server
{
//用来存储所有连接上来的客户
private List<ServerThread> clients;
public static void main(String[] args)
{
Server s = new Server();
s.startServer(9988);
}
publi
- 多线程监听器事件模式(一个简单的例子)
百合不是茶
线程监听模式
多线程的事件监听器模式
监听器时间模式经常与多线程使用,在多线程中如何知道我的线程正在执行那什么内容,可以通过时间监听器模式得到
创建多线程的事件监听器模式 思路:
1, 创建线程并启动,在创建线程的位置设置一个标记
2,创建队
- spring InitializingBean接口
bijian1013
javaspring
spring的事务的TransactionTemplate,其源码如下:
public class TransactionTemplate extends DefaultTransactionDefinition implements TransactionOperations, InitializingBean{
...
}
TransactionTemplate继承了DefaultT
- Oracle中询表的权限被授予给了哪些用户
bijian1013
oracle数据库权限
Oracle查询表将权限赋给了哪些用户的SQL,以备查用。
select t.table_name as "表名",
t.grantee as "被授权的属组",
t.owner as "对象所在的属组"
- 【Struts2五】Struts2 参数传值
bit1129
struts2
Struts2中参数传值的3种情况
1.请求参数绑定到Action的实例字段上
2.Action将值传递到转发的视图上
3.Action将值传递到重定向的视图上
一、请求参数绑定到Action的实例字段上以及Action将值传递到转发的视图上
Struts可以自动将请求URL中的请求参数或者表单提交的参数绑定到Action定义的实例字段上,绑定的规则使用ognl表达式语言
- 【Kafka十四】关于auto.offset.reset[Q/A]
bit1129
kafka
I got serveral questions about auto.offset.reset. This configuration parameter governs how consumer read the message from Kafka when there is no initial offset in ZooKeeper or
- nginx gzip压缩配置
ronin47
nginx gzip 压缩范例
nginx gzip压缩配置 更多
0
nginx
gzip
配置
随着nginx的发展,越来越多的网站使用nginx,因此nginx的优化变得越来越重要,今天我们来看看nginx的gzip压缩到底是怎么压缩的呢?
gzip(GNU-ZIP)是一种压缩技术。经过gzip压缩后页面大小可以变为原来的30%甚至更小,这样,用
- java-13.输入一个单向链表,输出该链表中倒数第 k 个节点
bylijinnan
java
two cursors.
Make the first cursor go K steps first.
/*
* 第 13 题:题目:输入一个单向链表,输出该链表中倒数第 k 个节点
*/
public void displayKthItemsBackWard(ListNode head,int k){
ListNode p1=head,p2=head;
- Spring源码学习-JdbcTemplate queryForObject
bylijinnan
javaspring
JdbcTemplate中有两个可能会混淆的queryForObject方法:
1.
Object queryForObject(String sql, Object[] args, Class requiredType)
2.
Object queryForObject(String sql, Object[] args, RowMapper rowMapper)
第1个方法是只查
- [冰川时代]在冰川时代,我们需要什么样的技术?
comsci
技术
看美国那边的气候情况....我有个感觉...是不是要进入小冰期了?
那么在小冰期里面...我们的户外活动肯定会出现很多问题...在室内呆着的情况会非常多...怎么在室内呆着而不发闷...怎么用最低的电力保证室内的温度.....这都需要技术手段...
&nb
- js 获取浏览器型号
cuityang
js浏览器
根据浏览器获取iphone和apk的下载地址
<!DOCTYPE html>
<html>
<head>
<meta charset="utf-8" content="text/html"/>
<meta name=
- C# socks5详解 转
dalan_123
socketC#
http://www.cnblogs.com/zhujiechang/archive/2008/10/21/1316308.html 这里主要讲的是用.NET实现基于Socket5下面的代理协议进行客户端的通讯,Socket4的实现是类似的,注意的事,这里不是讲用C#实现一个代理服务器,因为实现一个代理服务器需要实现很多协议,头大,而且现在市面上有很多现成的代理服务器用,性能又好,
- 运维 Centos问题汇总
dcj3sjt126com
云主机
一、sh 脚本不执行的原因
sh脚本不执行的原因 只有2个
1.权限不够
2.sh脚本里路径没写完整。
二、解决You have new mail in /var/spool/mail/root
修改/usr/share/logwatch/default.conf/logwatch.conf配置文件
MailTo =
MailFrom
三、查询连接数
- Yii防注入攻击笔记
dcj3sjt126com
sqlWEB安全yii
网站表单有注入漏洞须对所有用户输入的内容进行个过滤和检查,可以使用正则表达式或者直接输入字符判断,大部分是只允许输入字母和数字的,其它字符度不允许;对于内容复杂表单的内容,应该对html和script的符号进行转义替换:尤其是<,>,',"",&这几个符号 这里有个转义对照表:
http://blog.csdn.net/xinzhu1990/articl
- MongoDB简介[一]
eksliang
mongodbMongoDB简介
MongoDB简介
转载请出自出处:http://eksliang.iteye.com/blog/2173288 1.1易于使用
MongoDB是一个面向文档的数据库,而不是关系型数据库。与关系型数据库相比,面向文档的数据库不再有行的概念,取而代之的是更为灵活的“文档”模型。
另外,不
- zookeeper windows 入门安装和测试
greemranqq
zookeeper安装分布式
一、序言
以下是我对zookeeper 的一些理解: zookeeper 作为一个服务注册信息存储的管理工具,好吧,这样说得很抽象,我们举个“栗子”。
栗子1号:
假设我是一家KTV的老板,我同时拥有5家KTV,我肯定得时刻监视
- Spring之使用事务缘由(2-注解实现)
ihuning
spring
Spring事务注解实现
1. 依赖包:
1.1 spring包:
spring-beans-4.0.0.RELEASE.jar
spring-context-4.0.0.
- iOS App Launch Option
啸笑天
option
iOS 程序启动时总会调用application:didFinishLaunchingWithOptions:,其中第二个参数launchOptions为NSDictionary类型的对象,里面存储有此程序启动的原因。
launchOptions中的可能键值见UIApplication Class Reference的Launch Options Keys节 。
1、若用户直接
- jdk与jre的区别(_)
macroli
javajvmjdk
简单的说JDK是面向开发人员使用的SDK,它提供了Java的开发环境和运行环境。SDK是Software Development Kit 一般指软件开发包,可以包括函数库、编译程序等。
JDK就是Java Development Kit JRE是Java Runtime Enviroment是指Java的运行环境,是面向Java程序的使用者,而不是开发者。 如果安装了JDK,会发同你
- Updates were rejected because the tip of your current branch is behind
qiaolevip
学习永无止境每天进步一点点众观千象git
$ git push joe prod-2295-1
To
[email protected]:joe.le/dr-frontend.git
! [rejected] prod-2295-1 -> prod-2295-1 (non-fast-forward)
error: failed to push some refs to '
[email protected]
- [一起学Hive]之十四-Hive的元数据表结构详解
superlxw1234
hivehive元数据结构
关键字:Hive元数据、Hive元数据表结构
之前在 “[一起学Hive]之一–Hive概述,Hive是什么”中介绍过,Hive自己维护了一套元数据,用户通过HQL查询时候,Hive首先需要结合元数据,将HQL翻译成MapReduce去执行。
本文介绍一下Hive元数据中重要的一些表结构及用途,以Hive0.13为例。
文章最后面,会以一个示例来全面了解一下,
- Spring 3.2.14,4.1.7,4.2.RC2发布
wiselyman
Spring 3
Spring 3.2.14、4.1.7及4.2.RC2于6月30日发布。
其中Spring 3.2.1是一个维护版本(维护周期到2016-12-31截止),后续会继续根据需求和bug发布维护版本。此时,Spring官方强烈建议升级Spring框架至4.1.7 或者将要发布的4.2 。
其中Spring 4.1.7主要包含这些更新内容。