- PointMixer论文阅读笔记
ZHANG8023ZHEN
论文阅读笔记
MLP-mixer是最近很流行的一种网络结构,比起Transformer和CNN的节构笨重,MLP-mixer不仅节构简单,而且在图像识别方面表现优异。但是MLP-mixer在点云识别方面表现欠佳,PointMixer就是在保留了MLP-mixer优点的同时,还可以很好的处理点云问题。PointMixer可以很好的处理intra-set,inter-set,hierarchical-set的点云。
- 【论文阅读】RadHAR:通过毫米波雷达生成的点云识别人类活动
dotJunz
论文阅读论文阅读
文章目录原文题目摘要1引言2背景2.1毫米波雷达3RADHAR概述3.1数据收集和预处理3.2MMActvity数据集3.3数据预处理3.4分类器4评价5结论原文题目RadHAR:HumanActivityRecognitionfromPointCloudsGeneratedthroughaMillimeter-waveRadar摘要准确的人类活动识别(HAR)是实现新兴的情境感知应用的关键,这些
- 【论文】点云识别与分割:PointNet
杨keEpsTrong-
点云深度学习神经网络python
1引言早期三维场景的识别与分割主要有三种方法,一是多视角,即将多张二维图片堆叠成三维立体做以处理,二是体素化,即对若干能表达实体的立方体素进行处理,三是非欧式处理。点云相较来说容易获取且表达简单,PointNet就是一种点云的识别与分割的方法。2分析点云主要有三个性质,它决定其不可使用简单的深度学习方法进行分割处理;一是无序性,即点云的输入是无序的,但是其在空间中呈现的效果不会因顺序发生改变;二是
- 『点云识别』基于对应分组的三维物体识别
爱钓鱼的歪猴
点云深度学习机器学习人工智能点云识别
SHOT特征描述子SHOT(SignatureofHistogramsofOrientations)是一种用于描述点云特征的算法。它基于点云的法线信息和局部区域的形态分布统计,用于表示点云中的局部形状信息。SHOT特征描述子在三维物体识别、匹配和配准等任务中广泛应用。SHOT特征描述子的计算步骤如下:选择一个中心点,并计算该点的法线方向。在该中心点周围选择若干个邻域点(例如,使用半径搜索或Kd树搜
- 点云识别-多个目标物体配准
小修勾
PCL点云学习经验分享
点云配准-多个目标物体配准综述算法流程过程结论综述常见的点云配准都是单一配准,最经典的为粗配+icp精配准。本文依据pcl中cg算法,利用hough进行识别。算法流程1、计算法线2、均匀降采样3、shot描述子计算4、寻找对应关系5、利用hough进行配准过程1、原始点云如下(注:点云数据来自鹏力3D相机)2、配准显示:3、配准结果:绿色为模板点云,红色为配准后的点云,蓝色为采样后的模板与场景点云
- 3D点云识别安全吗? 学界提出健壮性分析数据集:ModelNet40-C
Amusi(CVer)
计算机视觉机器学习人工智能深度学习python
点击下方卡片,关注“CVer”公众号AI/CV重磅干货,第一时间送达3D点云识别安全吗?学界提出健壮性分析数据集ModelNet40-C点云失真为3D深度学习带来新的挑战!论文:BenchmarkingRobustnessof3DPointCloudRecognitionAgainstCommonCorruptions论文地址:https://arxiv.org/abs/2201.12296项目主
- 基于PCL的QT开发(两个月内更新完)
小修勾
PCL点云学习PCLQT开发qt点云pcl
《QT+PCL学习记录》最新补充:《QT+PCL》补充一、《QT+PCL第一章》基本操作二、《QT+PCL第二章》点云显示三、《QT+PCL第三章》点云滤波四、《QT+PCL第四章》点云关键点五、《QT+PCL第五章》点云特征六、《QT+PCL第六章》点云配准七、《QT+PCL第七章》点云分割八、《QT+PCL第八章》点云识别九、《QT+PCL第九章》点云重建最新补充:《QT+PCL》补充《QT+
- 点云数据滤波处理(PCL实现)
深圳视觉软件JJ
C#算法计算机视觉人工智能
引:点云数据滤波处理(PCL实现)-简书2020.01.0314:29:02字数942阅读5,412点云数据滤波处理(PCL实现)1.滤波器介绍点云目标识别的流程:数据采集->滤波->点云分割->点云识别,数据采集可以通过RGBD相机或者激光雷达等设备采集。由于采集设备精度,环境因素,光照因素,物体表面性质等影响,会导致点云数据不可避免的出现噪音。滤波过程就是为了解决点云数据密度不规则不平滑,离群
- 点云上的卷积神经网络及其部分应用
深蓝学院
人工智能3D点云计算机视觉卷积神经网络
本次公开课由李伏欣老师主讲,李伏欣老师是美国俄勒冈州立大学助力教授,公开课主要介绍了涵盖3D点云领域的研究,并重点介绍了李老师近期的最新工作内容。公开课回放链接:https://www.shenlanxueyuan.com/open/course/33本次分享首先介绍了最近几年的两篇经典论文中3D点云识别的工作,详细介绍PointNet++与PointNet;接着由传统CNN入手,逐渐引入Poin
- 点云特征提取及分类、VFH、SVM、CNN
SensorFusion
点云模型训练分类几何学机器学习
随着激光雷达,RGBD相机等3D传感器在机器人,无人驾驶领域的广泛应用。针对三维点云数据的研究也逐渐从低层次几何特征提取(PFH,FPFH,VFH等)向高层次语义理解过渡(点云识别,语义分割)。与图像感知领域深度学习几乎一统天下不同,针对无序点云数据的深度学习方法研究则进展缓慢。分析其背后的原因,不外乎三个方面:1.点云具有无序性。受采集设备以及坐标系影响,同一个物体使用不同的设备或者位置扫描,三
- 【3D点云识别】PointNet++论文及代码解读
KirutoCode
VOS
PointNet++论文及代码理解解决什么问题本文创新点\贡献前人方法方法问题定义方法概述HierarchicalPointSetFeatureLearningRobustFeatureLearningunderNon-UniformSamplingDensityPointFeaturePropagationforSetSegmentation代码数据读取基本函数网络结构错误记录实验结果解决什么问
- 【点云识别】Adaptive Hierarchical Down-Sampling for Point Cloud Classification(CVPR 2020)
orientliu96
点云识别点云
AdaptiveHierarchicalDown-SamplingforPointCloudClassification本文介绍一篇cvpr2020里面关于点云分类降采样的文章。论文没有开源代码1.问题FPS的时间复杂度太高,类似Samplenet的方法会产生新的点,随机采样无法保证重要的点被保留下来。所以本文提出了一种不产生新的点的采样方法。2.思想整体思想非常简单,借鉴pointnet中最后的
- 【点云识别】D3Feat: Joint Learning of Dense Detection and Description of 3D Local Features(CVPR 2020 Oral)
orientliu96
点云识别
D3Feat:JointLearningofDenseDetectionandDescriptionof3DLocalFeatures本文介绍一篇cvpr2020里面关于点云matching的文章。论文代码1.问题PointCloudMatching。前人的工作没有将点云的dectection和descriptors联合起来学习,会导致detector不能匹配上descriptor的能力。2.思想
- 【点云识别】Weakly Supervised Semantic Point Cloud Segmentation: Towards 10x Fewer Labels(CVPR 2020)
orientliu96
点云识别
WeaklySupervisedSemanticPointCloudSegmentation:Towards10xFewerLabels本文介绍一篇cvpr2020里面关于点云弱监督分割的文章。论文目前还没有开源代码1.问题点云的弱监督分割2.思想根据弱监督的特点,提出了incompletesupervisionbranch和inexactsupervisionbranch。同时,作者认为任何一个
- 【点云识别】Multi-Path Region Mining ForWeakly Supervised 3D Semantic Segmentation on Point Clouds
orientliu96
点云识别
Multi-PathRegionMiningForWeaklySupervised3DSemanticSegmentationonPointClouds本文介绍一篇cvpr2020里面关于点云弱监督分割的文章。论文目前还没有开源代码1.问题目前获得大规模点云已经不是一件困难的事情了,但是对其进行标注是十分费时。例如ScanNet数据集,对一个scan标注时间的中位数和平均数大概是16.8min和2
- 【点云识别】PointGroup: Dual-Set Point Grouping for 3D Instance Segmentation (CVPR 2020)
orientliu96
点云识别
PointGroup:Dual-SetPointGroupingfor3DInstanceSegmentation本文介绍一篇cvpr2020里面关于点云实例分割的文章。论文目前还没有开源代码1.问题和2D图片不同,3D点云不存在遮挡现象,存在大量的voidspace,本文想充分利用voidspace进行分割。2.思想那么如何利用这些voidspace呢?本文采取一种shift的思想,正因为voi
- 【点云识别】PointContrast: Unsupervised Pre-training for 3D Point Cloud Understanding (ECCV 2020)
orientliu96
点云识别点云
PointContrast:UnsupervisedPre-trainingfor3DPointCloudUnderstanding本文介绍一篇ECCV2020里面关于点云无监督预训练的文章。论文目前还没有开源代码1.问题点云无监督预训练2.思想点云的预训练领域处于比较空白的状态,本文focuson高级别的场景理解任务,提出了一种无监督的PointContrast与训练方法。文章主体依赖于FCGF
- 【点云识别】Mapping in a Cycle: Sinkhorn Regularized Unsupervised Learning for Point Cloud Shapes ECCV2020
orientliu96
点云识别点云
MappinginaCycle:SinkhornRegularizedUnsupervisedLearningforPointCloudShapes本文介绍一篇ECCV2020里面关于点云无监督学习的文章。论文目前还没有开源代码1.问题点云形状的无监督学习2.思想本文的主体思路是延续Unsupervisedcycle-consistentdeformationforshapematching这篇文
- 【点云识别】Feature-metric Registration: A Fast Semi-supervised Approach for Robust Point Cloud(CVPR 2020)
orientliu96
点云识别
Feature-metricRegistration:AFastSemi-supervisedApproachforRobustPointCloudRegistrationwithoutCorrespondences本文介绍一篇cvpr2020里面关于点云半监督配准的文章。论文没有开源代码1.问题点云的弱监督配准问题2.思想followpointlk的一份工作,认为不同位姿的点云提取出的特征是不同
- 视频教程-机器学习导论(理论课程全面录制)-机器学习
weixin_32153439
机器学习导论(理论课程全面录制)乐川科技有限公司CEO,人工智能培训讲师,专业从事机器学习与深度学习培训。参与多个人工智能领域项目,专注于机器学习与计算机视觉领域,长期参与无人驾驶汽车项目,专注研究无人驾驶领域的目标识别与跟踪,善于人脸识别、物体识别、轨迹跟踪、点云识别分析等方向的新算法。王而川¥99.00立即订阅订阅后:请点击此处观看视频课程视频教程-机器学习导论(理论课程全面录制)-机器学习学
- 视频教程-机器学习概论--入门精讲视频-机器学习
weixin_30385511
机器学习概论--入门精讲视频乐川科技有限公司CEO,人工智能培训讲师,专业从事机器学习与深度学习培训。参与多个人工智能领域项目,专注于机器学习与计算机视觉领域,长期参与无人驾驶汽车项目,专注研究无人驾驶领域的目标识别与跟踪,善于人脸识别、物体识别、轨迹跟踪、点云识别分析等方向的新算法。王而川¥49.00立即订阅订阅后:请点击此处观看视频课程视频教程-机器学习概论--入门精讲视频-机器学习学习有效期
- 【点云识别】3D-MPA: Multi Proposal Aggregation for 3D Semantic Instance Segmentation (CVPR 2020)
orientliu96
点云识别
3D-MPA:MultiProposalAggregationfor3DSemanticInstanceSegmentation本文介绍一篇cvpr2020里面关于点云识别的文章。论文目前还没有开源代码1.问题3D目标检测的主要难点在于如何预测和处理objectproposal。一种思路是是自上而下的方式,先回归大量的box,然后再进行第二阶段的优化。但是如果box的偏差比较大,此类方法就很难奏效
- 点云特征提取--vfh
阿GEM是我的
模式识别&图像处理
开始做点云识别了,在matlab上自己写了一个点云特征提取脚本,跑出来的效果还不错,于是想跟pcl官网的点云特征提取算法比较一下,看看两者在识别上谁会好一点。vfh代码我参考某位博主的,忘记是谁了阿。我封装成了一个函数,输入点云,返回308维的点云特征。#include#include//法线特征pcl::PointCloudGetVFHFeature(pcl::PointCloud::Ptrcl
- 点云识别-Geometry Sharing Network for 3D Point Cloud Classification and Segmentation
alfred_torres
点云识别
2020AAAI一种关注几何特征的点云分类和Part分割网络摘要原文译文Inspiteoftherecentprogressesonclassifying3DpointcloudwithdeepCNNs,largegeometrictransformationslikerotationandtranslationremainchallengingproblemandharmthefinalclas
- 3D 点云识别: Geometric Feedback Network for Point Cloud Classification
alfred_torres
点云识别
GeometricFeedbackNetworkforPointCloudClassification用于点云分类的几何特征反馈网络2019/12/2arXiv摘要Asthebasictaskofpointcloudlearning,classificationisfundamentalbutalwayschallenging.分类任务作为点云学习中的基础任务,是至关重要并且一直存在挑战性。Toa
- 3D点云数据结合深度学习入门基础(目标篇)
可乐粑粑
3D识别与语义分割
最近,老师让我们研究深度学习与3D点云数据的研究方向,开始时,确实也不清楚何为3D点云,以及深度学习。由于实验室师弟师妹全部是做深度学习识图相关横向研究工作的,所以很快的就掌握了,深度学习识图技术,主要是应用于平面图片的目标检测与分割(分类)工作。而其目标图片为我们日常使用电脑经常见到的各类Png,jpg等图片格式。但是3D点云识别又是个什么格式的东西呢,对于没接触到的朋友,第一感觉就是,我们识别
- 点云识别-Learning to Sample
alfred_torres
点云识别
LearningtoSample2019CVPR摘要原文译文Processinglargepointcloudsisachallengingtask.Therefore,thedataisoftensampledtoasizethatcanbeprocessedmoreeasily.处理大规模点云是一项具有挑战性的任务,因此,一般把点云下采样到数量较少的size,方便处理Thequestionis
- 【点云识别】RandLA-Net: Efficient Semantic Segmentation of Large-Scale Point Clouds (CVPR 2020 Oral)
orientliu96
点云识别
RandLA-Net:EfficientSemanticSegmentationofLarge-ScalePointClouds本文介绍一篇cvpr2020里面关于大场景下点云分割的文章。论文代码1.问题为了解决的问题很直接,超大规模的点云分割2.思想网络架构如上,本文花了大量的时间论述针对超大规模的点云场景,目前只能使用随机采样这种快速的采样方法。对比部分可以详见论文。为了与随机采样这种方法相适
- 视频教程-机器学习算法之线性模型视频教学-机器学习
weixin_30392923
机器学习算法之线性模型视频教学乐川科技有限公司CEO,人工智能培训讲师,专业从事机器学习与深度学习培训。参与多个人工智能领域项目,专注于机器学习与计算机视觉领域,长期参与无人驾驶汽车项目,专注研究无人驾驶领域的目标识别与跟踪,善于人脸识别、物体识别、轨迹跟踪、点云识别分析等方向的新算法。王而川¥117.00立即订阅订阅后:请点击此处观看视频课程视频教程-机器学习算法之线性模型视频教学-机器学习学习
- 【点云识别】Learning to Segment 3D Point Clouds in 2D Image Space (CVPR 2020)
orientliu96
点云识别
LearningtoSegment3DPointCloudsin2DImageSpace本文介绍一篇cvpr2020里面关于点云部件分割的文章。论文代码1.问题相比于2DU-net的架构上,点云上的部件分割没有取得比较好的进展。所以这篇文章,将3D点云投影到2D空间上,再使用U-net的架构进行分割,取得的效果可谓是遥遥领先!2.思想整体流程就是以下三步Constructgraphsfrompoi
- java解析APK
3213213333332132
javaapklinux解析APK
解析apk有两种方法
1、结合安卓提供apktool工具,用java执行cmd解析命令获取apk信息
2、利用相关jar包里的集成方法解析apk
这里只给出第二种方法,因为第一种方法在linux服务器下会出现不在控制范围之内的结果。
public class ApkUtil
{
/**
* 日志对象
*/
private static Logger
- nginx自定义ip访问N种方法
ronin47
nginx 禁止ip访问
因业务需要,禁止一部分内网访问接口, 由于前端架了F5,直接用deny或allow是不行的,这是因为直接获取的前端F5的地址。
所以开始思考有哪些主案可以实现这样的需求,目前可实施的是三种:
一:把ip段放在redis里,写一段lua
二:利用geo传递变量,写一段
- mysql timestamp类型字段的CURRENT_TIMESTAMP与ON UPDATE CURRENT_TIMESTAMP属性
dcj3sjt126com
mysql
timestamp有两个属性,分别是CURRENT_TIMESTAMP 和ON UPDATE CURRENT_TIMESTAMP两种,使用情况分别如下:
1.
CURRENT_TIMESTAMP
当要向数据库执行insert操作时,如果有个timestamp字段属性设为
CURRENT_TIMESTAMP,则无论这
- struts2+spring+hibernate分页显示
171815164
Hibernate
分页显示一直是web开发中一大烦琐的难题,传统的网页设计只在一个JSP或者ASP页面中书写所有关于数据库操作的代码,那样做分页可能简单一点,但当把网站分层开发后,分页就比较困难了,下面是我做Spring+Hibernate+Struts2项目时设计的分页代码,与大家分享交流。
1、DAO层接口的设计,在MemberDao接口中定义了如下两个方法:
public in
- 构建自己的Wrapper应用
g21121
rap
我们已经了解Wrapper的目录结构,下面可是正式利用Wrapper来包装我们自己的应用,这里假设Wrapper的安装目录为:/usr/local/wrapper。
首先,创建项目应用
&nb
- [简单]工作记录_多线程相关
53873039oycg
多线程
最近遇到多线程的问题,原来使用异步请求多个接口(n*3次请求) 方案一 使用多线程一次返回数据,最开始是使用5个线程,一个线程顺序请求3个接口,超时终止返回 缺点 测试发现必须3个接
- 调试jdk中的源码,查看jdk局部变量
程序员是怎么炼成的
jdk 源码
转自:http://www.douban.com/note/211369821/
学习jdk源码时使用--
学习java最好的办法就是看jdk源代码,面对浩瀚的jdk(光源码就有40M多,比一个大型网站的源码都多)从何入手呢,要是能单步调试跟进到jdk源码里并且能查看其中的局部变量最好了。
可惜的是sun提供的jdk并不能查看运行中的局部变量
- Oracle RAC Failover 详解
aijuans
oracle
Oracle RAC 同时具备HA(High Availiablity) 和LB(LoadBalance). 而其高可用性的基础就是Failover(故障转移). 它指集群中任何一个节点的故障都不会影响用户的使用,连接到故障节点的用户会被自动转移到健康节点,从用户感受而言, 是感觉不到这种切换。
Oracle 10g RAC 的Failover 可以分为3种:
1. Client-Si
- form表单提交数据编码方式及tomcat的接受编码方式
antonyup_2006
JavaScripttomcat浏览器互联网servlet
原帖地址:http://www.iteye.com/topic/266705
form有2中方法把数据提交给服务器,get和post,分别说下吧。
(一)get提交
1.首先说下客户端(浏览器)的form表单用get方法是如何将数据编码后提交给服务器端的吧。
对于get方法来说,都是把数据串联在请求的url后面作为参数,如:http://localhost:
- JS初学者必知的基础
百合不是茶
js函数js入门基础
JavaScript是网页的交互语言,实现网页的各种效果,
JavaScript 是世界上最流行的脚本语言。
JavaScript 是属于 web 的语言,它适用于 PC、笔记本电脑、平板电脑和移动电话。
JavaScript 被设计为向 HTML 页面增加交互性。
许多 HTML 开发者都不是程序员,但是 JavaScript 却拥有非常简单的语法。几乎每个人都有能力将小的
- iBatis的分页分析与详解
bijian1013
javaibatis
分页是操作数据库型系统常遇到的问题。分页实现方法很多,但效率的差异就很大了。iBatis是通过什么方式来实现这个分页的了。查看它的实现部分,发现返回的PaginatedList实际上是个接口,实现这个接口的是PaginatedDataList类的对象,查看PaginatedDataList类发现,每次翻页的时候最
- 精通Oracle10编程SQL(15)使用对象类型
bijian1013
oracle数据库plsql
/*
*使用对象类型
*/
--建立和使用简单对象类型
--对象类型包括对象类型规范和对象类型体两部分。
--建立和使用不包含任何方法的对象类型
CREATE OR REPLACE TYPE person_typ1 as OBJECT(
name varchar2(10),gender varchar2(4),birthdate date
);
drop type p
- 【Linux命令二】文本处理命令awk
bit1129
linux命令
awk是Linux用来进行文本处理的命令,在日常工作中,广泛应用于日志分析。awk是一门解释型编程语言,包含变量,数组,循环控制结构,条件控制结构等。它的语法采用类C语言的语法。
awk命令用来做什么?
1.awk适用于具有一定结构的文本行,对其中的列进行提取信息
2.awk可以把当前正在处理的文本行提交给Linux的其它命令处理,然后把直接结构返回给awk
3.awk实际工
- JAVA(ssh2框架)+Flex实现权限控制方案分析
白糖_
java
目前项目使用的是Struts2+Hibernate+Spring的架构模式,目前已经有一套针对SSH2的权限系统,运行良好。但是项目有了新需求:在目前系统的基础上使用Flex逐步取代JSP,在取代JSP过程中可能存在Flex与JSP并存的情况,所以权限系统需要进行修改。
【SSH2权限系统的实现机制】
权限控制分为页面和后台两块:不同类型用户的帐号分配的访问权限是不同的,用户使
- angular.forEach
boyitech
AngularJSAngularJS APIangular.forEach
angular.forEach 描述: 循环对obj对象的每个元素调用iterator, obj对象可以是一个Object或一个Array. Iterator函数调用方法: iterator(value, key, obj), 其中obj是被迭代对象,key是obj的property key或者是数组的index,value就是相应的值啦. (此函数不能够迭代继承的属性.)
- java-谷歌面试题-给定一个排序数组,如何构造一个二叉排序树
bylijinnan
二叉排序树
import java.util.LinkedList;
public class CreateBSTfromSortedArray {
/**
* 题目:给定一个排序数组,如何构造一个二叉排序树
* 递归
*/
public static void main(String[] args) {
int[] data = { 1, 2, 3, 4,
- action执行2次
Chen.H
JavaScriptjspXHTMLcssWebwork
xwork 写道 <action name="userTypeAction"
class="com.ekangcount.website.system.view.action.UserTypeAction">
<result name="ssss" type="dispatcher">
- [时空与能量]逆转时空需要消耗大量能源
comsci
能源
无论如何,人类始终都想摆脱时间和空间的限制....但是受到质量与能量关系的限制,我们人类在目前和今后很长一段时间内,都无法获得大量廉价的能源来进行时空跨越.....
在进行时空穿梭的实验中,消耗超大规模的能源是必然
- oracle的正则表达式(regular expression)详细介绍
daizj
oracle正则表达式
正则表达式是很多编程语言中都有的。可惜oracle8i、oracle9i中一直迟迟不肯加入,好在oracle10g中终于增加了期盼已久的正则表达式功能。你可以在oracle10g中使用正则表达式肆意地匹配你想匹配的任何字符串了。
正则表达式中常用到的元数据(metacharacter)如下:
^ 匹配字符串的开头位置。
$ 匹配支付传的结尾位置。
*
- 报表工具与报表性能的关系
datamachine
报表工具birt报表性能润乾报表
在选择报表工具时,性能一直是用户关心的指标,但是,报表工具的性能和整个报表系统的性能有多大关系呢?
要回答这个问题,首先要分析一下报表的处理过程包含哪些环节,哪些环节容易出现性能瓶颈,如何优化这些环节。
一、报表处理的一般过程分析
1、用户选择报表输入参数后,报表引擎会根据报表模板和输入参数来解析报表,并将数据计算和读取请求以SQL的方式发送给数据库。
2、
- 初一上学期难记忆单词背诵第一课
dcj3sjt126com
wordenglish
what 什么
your 你
name 名字
my 我的
am 是
one 一
two 二
three 三
four 四
five 五
class 班级,课
six 六
seven 七
eight 八
nince 九
ten 十
zero 零
how 怎样
old 老的
eleven 十一
twelve 十二
thirteen
- 我学过和准备学的各种技术
dcj3sjt126com
技术
语言VB https://msdn.microsoft.com/zh-cn/library/2x7h1hfk.aspxJava http://docs.oracle.com/javase/8/C# https://msdn.microsoft.com/library/vstudioPHP http://php.net/manual/en/Html
- struts2中token防止重复提交表单
蕃薯耀
重复提交表单struts2中token
struts2中token防止重复提交表单
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
蕃薯耀 2015年7月12日 11:52:32 星期日
ht
- 线性查找二维数组
hao3100590
二维数组
1.算法描述
有序(行有序,列有序,且每行从左至右递增,列从上至下递增)二维数组查找,要求复杂度O(n)
2.使用到的相关知识:
结构体定义和使用,二维数组传递(http://blog.csdn.net/yzhhmhm/article/details/2045816)
3.使用数组名传递
这个的不便之处很明显,一旦确定就是不能设置列值
//使
- spring security 3中推荐使用BCrypt算法加密密码
jackyrong
Spring Security
spring security 3中推荐使用BCrypt算法加密密码了,以前使用的是md5,
Md5PasswordEncoder 和 ShaPasswordEncoder,现在不推荐了,推荐用bcrpt
Bcrpt中的salt可以是随机的,比如:
int i = 0;
while (i < 10) {
String password = "1234
- 学习编程并不难,做到以下几点即可!
lampcy
javahtml编程语言
不论你是想自己设计游戏,还是开发iPhone或安卓手机上的应用,还是仅仅为了娱乐,学习编程语言都是一条必经之路。编程语言种类繁多,用途各 异,然而一旦掌握其中之一,其他的也就迎刃而解。作为初学者,你可能要先从Java或HTML开始学,一旦掌握了一门编程语言,你就发挥无穷的想象,开发 各种神奇的软件啦。
1、确定目标
学习编程语言既充满乐趣,又充满挑战。有些花费多年时间学习一门编程语言的大学生到
- 架构师之mysql----------------用group+inner join,left join ,right join 查重复数据(替代in)
nannan408
right join
1.前言。
如题。
2.代码
(1)单表查重复数据,根据a分组
SELECT m.a,m.b, INNER JOIN (select a,b,COUNT(*) AS rank FROM test.`A` A GROUP BY a HAVING rank>1 )k ON m.a=k.a
(2)多表查询 ,
使用改为le
- jQuery选择器小结 VS 节点查找(附css的一些东西)
Everyday都不同
jquerycssname选择器追加元素查找节点
最近做前端页面,频繁用到一些jQuery的选择器,所以特意来总结一下:
测试页面:
<html>
<head>
<script src="jquery-1.7.2.min.js"></script>
<script>
/*$(function() {
$(documen
- 关于EXT
tntxia
ext
ExtJS是一个很不错的Ajax框架,可以用来开发带有华丽外观的富客户端应用,使得我们的b/s应用更加具有活力及生命力。ExtJS是一个用 javascript编写,与后台技术无关的前端ajax框架。因此,可以把ExtJS用在.Net、Java、Php等各种开发语言开发的应用中。
ExtJs最开始基于YUI技术,由开发人员Jack
- 一个MIT计算机博士对数学的思考
xjnine
Math
在过去的一年中,我一直在数学的海洋中游荡,research进展不多,对于数学世界的阅历算是有了一些长进。为什么要深入数学的世界?作为计算机的学生,我没有任何企图要成为一个数学家。我学习数学的目的,是要想爬上巨人的肩膀,希望站在更高的高度,能把我自己研究的东西看得更深广一些。说起来,我在刚来这个学校的时候,并没有预料到我将会有一个深入数学的旅程。我的导师最初希望我去做的题目,是对appe