RL 实践(6)—— CartPole【REINFORCE with baseline & A2C】

  • 本文介绍 REINFORCE with baseline 和 A2C 这两个带 baseline 的策略梯度方法,并在 CartPole-V0 上验证它们和无 baseline 的原始方法 REINFORCE & Actor-Critic 的优势
  • 参考:《动手学强化学习》
  • 完整代码下载:7_[Gym] CartPole-V0 (REINFORCE with baseline and A2C)

文章目录

  • 1. CartPole-V0 环境
  • 2. Policy Gradient with Baseline
    • 2.1 带 baseline 的策略梯度定理
    • 2.2 REINFORCE with baseline
      • 2.2.1 伪代码
      • 2.2.2 用 REINFORCE with baseline 方法解决 CartPole 问题
      • 2.2.3 性能
    • 2.3 Advantage Actor-Critic (A2C)
      • 2.3.1 伪代码
      • 2.3.2 用 A2C 方法解决 CartPole 问题
      • 2.3.3 性能
      • 2.3.4 引入目标网络
  • 3. 总结

1. CartPole-V0 环境

  • 本次实验使用 gym 自带的 CartPole-V0 环境。这是一个经典的一阶倒立摆控制问题,agent 的任务是通过左右移动保持车上的杆竖直,若杆的倾斜度数过大,或者车子离初始位置左右的偏离程度过大,或者坚持时间到达 200 帧,则游戏结束
    RL 实践(6)—— CartPole【REINFORCE with baseline & A2C】_第1张图片

  • 此环境的状态空间为

    维度 意义 取值范围
    0 滚球 x 轴坐标 [ 0 ,  width ] [0,\space \text{width}] [0, width]
    1 滚球 y 轴坐标 [ − inf ⁡ ,   inf ⁡ ] [-\inf, \space \inf] [inf, inf]
    2 滚球 x 轴速度 [ − 41.8 ° ,    41.8 ° ] [-41.8°,\space ~ 41.8°] [41.8°,  41.8°]
    3 滚球 y 轴速度 [ − inf ⁡ ,   inf ⁡ ] [-\inf, \space \inf] [inf, inf]

    动作空间为

    维度 意义
    0 向左移动小车
    1 向右移动小车

    奖励函数为每个 timestep 得到 1 的奖励,agent 坚持时间越长,则最后的分数越高,坚持 200 帧即可获得最高的分数 200

    倒立摆问题传统上可以用 pid 方法良好地解决。如果对 PID 这一套感兴趣,可以参考我的视频

    • 一看就懂的pid控制理论入门
    • 倒立摆模拟器
  • 下面给出环境的测试代码

    import os
    import sys
    import gym
    base_path = os.path.abspath(os.path.join(os.path.dirname(__file__), '..'))
    sys.path.append(base_path)
    
    import time
    from gym.utils.env_checker import check_env
    
    env_name = 'CartPole-v0'
    env = gym.make(env_name, render_mode='human')
    check_env(env.unwrapped)    # 检查环境是否符合 gym 规范
    env.action_space.seed(10)
    observation, _ = env.reset(seed=10)
    
    # 测试环境
    for i in range(100):
        while True:
            action = env.action_space.sample()
            state, reward, terminated, truncated, _ = env.step(action)
    
            if terminated or truncated:
                env.reset()
                break
    
            time.sleep(0.01)
            env.render()
    
    # 关闭环境渲染
    env.close()
    

2. Policy Gradient with Baseline

  • 上文 RL 实践(5)—— 二维滚球环境【REINFORCE & Actor-Critic】 介绍了两种经典的 Policy-Gradient 方法,Actor-Critic 和 REINFORCE,本文介绍这两种方法通用的一个改进技巧,可以有效提高算法的性能,并减小方差。
  • 首先回顾一下策略梯度方法的基本原理:对于用参数 θ \theta θ 形式化的策略网络 π θ : S → A \pi_\theta:\mathcal{S}\to\mathcal{A} πθ:SA,策略学习可以转换为如下优化问题
    max ⁡ θ { J ( θ ) = △ E s [ V π θ ( s ) ] } \max_\theta \left\{J(\theta) \stackrel{\triangle}{=} \mathbb{E}_s[V_{\pi_\theta}(s)] \right\} θmax{J(θ)=Es[Vπθ(s)]} 这个优化问题可以用梯度上升来解
    θ ← θ + β ⋅ ▽ θ J ( θ ) \theta \leftarrow \theta + \beta ·\triangledown_{\theta}J(\theta) θθ+βθJ(θ) 其中策略梯度可以用策略梯度定理计算
    ▽ θ J ( θ ) ∝ E S ∼ d ( ⋅ ) [ E A ∼ π θ ( ⋅ ∣ S ) [ ▽ θ ln ⁡ π θ ( A ∣ S ) ⋅ Q π θ ( S , A ) ] ] \triangledown_{\theta}J(\theta)\propto \mathbb{E}_{S \sim d(\cdot)}\Big[\mathbb{E}_{A \sim \pi_\theta(\cdot \mid S)}\left[\triangledown_{\theta}\ln \pi_\theta(A \mid S) \cdot Q_{\pi_\theta}(S, A)\right]\Big] θJ(θ)ESd()[EAπθ(S)[θlnπθ(AS)Qπθ(S,A)]] 我们通过两次 MC 近似消去两个积分,得到随机策略梯度
    g θ ( s , a ) = △ ▽ θ ln ⁡ π θ ( a ∣ s ) ⋅ Q π θ ( s , a ) g_\theta(s,a) \stackrel{\triangle}{=} \triangledown_{\theta}\ln \pi_\theta(a|s) \cdot Q_{\pi_\theta}(s,a) gθ(s,a)=θlnπθ(as)Qπθ(s,a) 其中 s , a s,a s,a 来自策略 π θ \pi_\theta πθ 和环境环境的某个具体 transition。最后,对动作价值函数 Q π ( s , a ) Q_\pi(s, a) Qπ(s,a) 的两种近似方案引出了两种策略梯度方法:
    1. REINFORCE:用实际 return u u u MC 近似 Q π ( s , a ) Q_\pi(s, a) Qπ(s,a)
    2. Actor-Critic:用神经网络(Critic) q w ( s , a ) q_w(s, a) qw(s,a) 近似 Q π ( s , a ) Q_\pi(s, a) Qπ(s,a)

2.1 带 baseline 的策略梯度定理

  • 我们首先证明一个引理:设 b b b 是任意函数, b b b 不依赖于 A A A。那么对于任意的 s s s,有
    E A ∼ π θ ( ⋅ ∣ s ) [ b ⋅ ▽ θ ln ⁡ π θ ( A ∣ s ) ] = 0 \mathbb{E}_{A \sim \pi_{\boldsymbol{\theta}}(\cdot \mid s )}\left[b \cdot \triangledown_{\theta}\ln \pi_\theta(A \mid s)\right]=0 EAπθ(s)[bθlnπθ(As)]=0

    由于 b b b 不依赖于动作 A A A,首先把 b b b 提取到期望外面
    E A ∼ π ( ⋅ ∣ s ; θ ) [ b ⋅ ∂ ln ⁡ π ( A ∣ s ; θ ) ∂ θ ] = b ⋅ E A ∼ π ( ⋅ ∣ s ; θ ) [ ∂ ln ⁡ π ( A ∣ s ; θ ) ∂ θ ] = b ⋅ ∑ a ∈ A π ( a ∣ s ; θ ) ⋅ ∂ ln ⁡ π ( a ∣ s ; θ ) ∂ θ = b ⋅ ∑ a ∈ A π ( a ∣ s ; θ ) ⋅ 1 π ( a ∣ s ; θ ) ⋅ ∂ π ( a ∣ s ; θ ) ∂ θ = b ⋅ ∑ a ∈ A ∂ π ( a ∣ s ; θ ) ∂ θ \begin{aligned} \mathbb{E}_{A \sim \pi(\cdot \mid s ; \boldsymbol{\theta})}\left[b \cdot \frac{\partial \ln \pi(A \mid s ; \boldsymbol{\theta})}{\partial \boldsymbol{\theta}}\right] & =b \cdot \mathbb{E}_{A \sim \pi(\cdot \mid s ; \boldsymbol{\theta})}\left[\frac{\partial \ln \pi(A \mid s ; \boldsymbol{\theta})}{\partial \boldsymbol{\theta}}\right] \\ & =b \cdot \sum_{a \in \mathcal{A}} \pi(a \mid s ; \boldsymbol{\theta}) \cdot \frac{\partial \ln \pi(a \mid s ; \boldsymbol{\theta})}{\partial \boldsymbol{\theta}} \\ & =b \cdot \sum_{a \in \mathcal{A}} \pi(a \mid s ; \boldsymbol{\theta}) \cdot \frac{1}{\pi(a \mid s ; \boldsymbol{\theta})} \cdot \frac{\partial \pi(a \mid s ; \boldsymbol{\theta})}{\partial \boldsymbol{\theta}} \\ & =b \cdot \sum_{a \in \mathcal{A}} \frac{\partial \pi(a \mid s ; \boldsymbol{\theta})}{\partial \boldsymbol{\theta}} \end{aligned} EAπ(s;θ)[bθlnπ(As;θ)]=bEAπ(s;θ)[θlnπ(As;θ)]=baAπ(as;θ)θlnπ(as;θ)=baAπ(as;θ)π(as;θ)1θπ(as;θ)=baAθπ(as;θ) 上式最右边的连加是关于 a a a 求的,而偏导是关于 θ \theta θ 求的,因此可以把连加放入偏导内部
    E A ∼ π ( ⋅ ∣ s ; θ ) [ b ⋅ ∂ ln ⁡ π ( A ∣ s ; θ ) ∂ θ ] = b ⋅ ∂ ∂ θ ∑ a ∈ A π ( a ∣ s ; θ ) ⏟ 恒等于  1 . = b ⋅ ∂ 1 ∂ θ = 0. \begin{aligned} \mathbb{E}_{A \sim \pi(\cdot \mid s ; \boldsymbol{\theta})}\left[b \cdot \frac{\partial \ln \pi(A \mid s ; \boldsymbol{\theta})}{\partial \boldsymbol{\theta}}\right]&=b \cdot \frac{\partial}{\partial \boldsymbol{\theta}} \underbrace{\sum_{a \in \mathcal{A}} \pi(a \mid s ; \boldsymbol{\theta})}_{\text {恒等于 } 1} . \\ &=b \cdot \frac{\partial 1}{\partial \boldsymbol{\theta}}=0 . \end{aligned} EAπ(s;θ)[bθlnπ(As;θ)]=bθ恒等于 1 aAπ(as;θ).=bθ1=0.

  • 证明此引理后,我们可以把这一项引入到策略梯度定义给出的策略梯度中
    ▽ θ J ( θ ) ∝ E S ∼ d ( ⋅ ) [ E A ∼ π θ ( ⋅ ∣ S ) [ ▽ θ ln ⁡ π θ ( A ∣ S ) ⋅ Q π θ ( S , A ) ] ] = E S ∼ d ( ⋅ ) [ E A ∼ π θ ( ⋅ ∣ S ) [ ▽ θ ln ⁡ π θ ( A ∣ S ) ⋅ Q π θ ( S , A ) ] − 0 ] = E S ∼ d ( ⋅ ) [ E A ∼ π θ ( ⋅ ∣ S ) [ ▽ θ ln ⁡ π θ ( A ∣ S ) ⋅ Q π θ ( S , A ) ] − E A ∼ π θ ( ⋅ ∣ s ) [ b ⋅ ▽ θ ln ⁡ π θ ( A ∣ s ) ] ] = E S ∼ d ( ⋅ ) [ E A ∼ π θ ( ⋅ ∣ S ) [ ▽ θ ln ⁡ π θ ( A ∣ S ) ⋅ ( Q π θ ( S , A ) − b ) ] ] \begin{aligned} \triangledown_{\theta}J(\theta) &\propto \mathbb{E}_{S \sim d(\cdot)}\Big[\mathbb{E}_{A \sim \pi_\theta(\cdot \mid S)}\left[\triangledown_{\theta}\ln \pi_\theta(A \mid S) \cdot Q_{\pi_\theta}(S, A)\right]\Big] \\ &= \mathbb{E}_{S \sim d(\cdot)}\Big[\mathbb{E}_{A \sim \pi_\theta(\cdot \mid S)}\left[\triangledown_{\theta}\ln \pi_\theta(A \mid S) \cdot Q_{\pi_\theta}(S, A)\right]-0\Big] \\ &= \mathbb{E}_{S \sim d(\cdot)}\Big[\mathbb{E}_{A \sim \pi_\theta(\cdot \mid S)}\left[\triangledown_{\theta}\ln \pi_\theta(A \mid S) \cdot Q_{\pi_\theta}(S, A)\right]-\mathbb{E}_{A \sim \pi_{\boldsymbol{\theta}}(\cdot \mid s )}\left[b \cdot \triangledown_{\theta}\ln \pi_\theta(A \mid s)\right]\Big] \\ &= \mathbb{E}_{S \sim d(\cdot)}\Big[\mathbb{E}_{A \sim \pi_\theta(\cdot \mid S)}\left[\triangledown_{\theta}\ln \pi_\theta(A \mid S) \cdot \big(Q_{\pi_\theta}(S, A)-b\big)\right]\Big] \\ \end{aligned} θJ(θ)ESd()[EAπθ(S)[θlnπθ(AS)Qπθ(S,A)]]=ESd()[EAπθ(S)[θlnπθ(AS)Qπθ(S,A)]0]=ESd()[EAπθ(S)[θlnπθ(AS)Qπθ(S,A)]EAπθ(s)[bθlnπθ(As)]]=ESd()[EAπθ(S)[θlnπθ(AS)(Qπθ(S,A)b)]] 进而可以得到 带基线的随机策略梯度,它仍是对原策略梯度的无偏估计
    g θ ( s , a ; b ) = △ ▽ θ ln ⁡ π θ ( a ∣ s ) ⋅ [ Q π θ ( s , a ) − b ] g_\theta(s,a;b) \stackrel{\triangle}{=} \triangledown_{\theta}\ln \pi_\theta(a|s) \cdot \Big[Q_{\pi_\theta}(s,a)-b\Big] gθ(s,a;b)=θlnπθ(as)[Qπθ(s,a)b] 其中不依赖于 A A A 的任意函数 b b b 就是所谓的 基线(baseline),它的引入不会影响策略梯度(期望不变),但会影响随机策略梯度 g θ ( s , a ; b ) g_\theta(s,a;b) gθ(s,a;b),进而影响随机策略梯度的方差
    Var ⁡ = E S , A [ ∥ g θ ( s , a ; b ) − ∇ θ J ( θ ) ∥ 2 ] \operatorname{Var}=\mathbb{E}_{S, A}\left[\left\|g_\theta(s,a;b) -\nabla_{\boldsymbol{\theta}} J(\boldsymbol{\theta})\right\|^{2}\right] Var=ES,A[gθ(s,a;b)θJ(θ)2] 如果 b b b 很接近 Q π θ ( s , a ; b ) Q_{\pi_\theta}(s, a;b) Qπθ(s,a;b) 关于 a a a 的均值,那么方差会比较小。因此 b = V π θ ( s ) b = V_{\pi_\theta}(s) b=Vπθ(s) 是很好的基线

2.2 REINFORCE with baseline

  • 我们使用 2.1 节得到的带基线的随机策略梯度 g θ ( s , a ; b ) g_\theta(s,a;b) gθ(s,a;b) 改写前文的 REINFORCR 算法,基线设置为 b = V π θ ( s ) b = V_{\pi_\theta}(s) b=Vπθ(s),即
    g θ ( s , a ) = △ ▽ θ ln ⁡ π θ ( a ∣ s ) ⋅ [ Q π θ ( s , a ) − V π θ ( s ) ] g_\theta(s,a) \stackrel{\triangle}{=} \triangledown_{\theta}\ln \pi_\theta(a|s) \cdot \Big[Q_{\pi_\theta}(s,a)-V_{\pi_\theta}(s)\Big] gθ(s,a)=θlnπθ(as)[Qπθ(s,a)Vπθ(s)] 其中 Q π θ ( s , a ) Q_{\pi_\theta}(s,a) Qπθ(s,a) 仍然和 REINFORCR 一样使用轨迹的真实 return u u u 来估计, V π θ ( s ) V_{\pi_\theta}(s) Vπθ(s) 则引入一个价值网络 v ω v_\omega vω 来估计,估计方式为 MC(而非 TD bootstrap)

2.2.1 伪代码

  • 每轮迭代我们用当前策略 π θ \pi_\theta πθ 交互得到一条轨迹,然后计算出每一个 transition ( s , a , r , s ′ ) (s,a,r,s') (s,a,r,s) 对应的 return u u u首先用 u u u 作为标签用 mse loss 优化价值网络 v ω v_\omega vω(这样价值网络可以更好地估计 V π θ V_{\pi_\theta} Vπθ),然后利用更新后的 v w v_w vw 计算 g θ ( s , a ) g_\theta(s,a) gθ(s,a) 来更新策略网络 π θ \pi_\theta πθ。伪代码如下
    初始化策略网络  π θ  和价值网络  v ω f o r    e p i s o d e    e = 1 → E    d o : 用当前策略 π θ 交互一条轨迹  s 1 , a 1 , r 1 , . . . , s n , a n , r n 计算所有  r e t u r n   u t = ∑ k = t m γ k − t r k ,   t = 1 , 2 , . . . , n 更新  v ω  参数  l ω = 1 2 n ∑ t = 1 n [ v ω ( s t ) − u t ] 2 更新  π θ  参数  θ ← θ + β ⋅ ▽ θ ln ⁡ π θ ( a t ∣ s t ) ⋅ ( u t − v ω ( s t ) ) ,   t = 1 , 2 , . . . , n e n d    f o r \begin{aligned} &初始化策略网络 \space \pi_\theta \space 和价值网络 \space v_\omega \\ &for \space\space episode \space\space e=1 \rightarrow E \space\space do :\\ &\quad\quad 用当前策略 \pi_{\theta} 交互一条轨迹\space s_1, a_1, r_1,...,s_n, a_n, r_n \\ & \quad\quad 计算所有 \space return \space u_t = \sum_{k=t}^m \gamma^{k-t} r_k, \space t=1,2,...,n\\ &\quad\quad 更新 \space v_\omega \space 参数 \space l_\omega = \frac{1}{2n}\sum_{t=1}^n\Big[v_\omega(s_t) - u_t \Big]^2\\ &\quad\quad更新 \space \pi_\theta \space参数\space \theta \leftarrow \theta + \beta ·\triangledown_{\theta}\ln \pi_\theta(a_t|s_t) \cdot \big(u_t - v_\omega(s_t)\big), \space t=1,2,...,n \\ &end \space\space for \end{aligned} 初始化策略网络 πθ 和价值网络 vωfor  episode  e=1E  do:用当前策略πθ交互一条轨迹 s1,a1,r1,...,sn,an,rn计算所有 return ut=k=tmγktrk, t=1,2,...,n更新 vω 参数 lω=2n1t=1n[vω(st)ut]2更新 πθ 参数 θθ+βθlnπθ(atst)(utvω(st)), t=1,2,...,nend  for

2.2.2 用 REINFORCE with baseline 方法解决 CartPole 问题

  • 定义策略网络和价值网络

    class PolicyNet(torch.nn.Module):
        ''' 策略网络是一个两层 MLP '''
        def __init__(self, input_dim, hidden_dim, output_dim):
            super(PolicyNet, self).__init__()
            self.fc1 = torch.nn.Linear(input_dim, hidden_dim)
            self.fc2 = torch.nn.Linear(hidden_dim, output_dim)
    
        def forward(self, x):
            x = F.relu(self.fc1(x))             # (1, hidden_dim)
            x = F.softmax(self.fc2(x), dim=1)   # (1, output_dim)
            return x
    
    class VNet(torch.nn.Module):
        ''' 价值网络是一个两层 MLP '''
        def __init__(self, input_dim, hidden_dim):
            super(VNet, self).__init__()
            self.fc1 = torch.nn.Linear(input_dim, hidden_dim)
            self.fc2 = torch.nn.Linear(hidden_dim, 1)
    
        def forward(self, x):
            x = F.relu(self.fc1(x))
            x = self.fc2(x)
            return
    
  • 定义 REINFORCE with baseline agent

    class REINFORCE_Baseline(torch.nn.Module):
        def __init__(self, state_dim, hidden_dim, action_range, lr_policy, lr_value, gamma, device):
            super().__init__()
            self.policy_net = PolicyNet(state_dim, hidden_dim, action_range).to(device)
            self.v_net = VNet(state_dim, hidden_dim).to(device)
            self.optimizer_policy = torch.optim.Adam(self.policy_net.parameters(), lr=lr_policy)    # 使用Adam优化器
            self.optimizer_value = torch.optim.Adam(self.v_net.parameters(), lr=lr_value)           # 使用Adam优化器
            self.gamma = gamma
            self.device = device
    
        def take_action(self, state):  
            # 根据动作概率分布随机采样
            state = torch.tensor(state, dtype=torch.float).to(self.device)
            state = state.unsqueeze(0)
            probs = self.policy_net(state).squeeze()
            action_dist = torch.distributions.Categorical(probs)
            action = action_dist.sample()
            return action.item()
    
        def update(self, transition_dict):
            G, returns = 0, []
            for reward in reversed(transition_dict['rewards']):
                G = self.gamma * G + reward
                returns.insert(0, G)
    
            rewards = torch.tensor(transition_dict['rewards'], dtype=torch.float).view(-1, 1).to(self.device).squeeze()     # (bsz, )
            returns = torch.tensor(returns, dtype=torch.float).view(-1, 1).to(self.device).squeeze()                        # (bsz, )
            states = torch.tensor(np.array(transition_dict['states']), dtype=torch.float).to(self.device)                   # (bsz, state_dim)
            actions = torch.tensor(transition_dict['actions']).view(-1, 1).to(self.device)                                  # (bsz, action_dim)
    
            # 梯度清零
            self.optimizer_value.zero_grad()
            self.optimizer_policy.zero_grad()
            
            # 更新价值网络
            value_predicts = self.v_net(states).squeeze()                   # (bsz, )
            value_loss = torch.mean(F.mse_loss(value_predicts, returns))     
            value_loss.backward()
            self.optimizer_value.step()
    
            # 更新策略网络, 从轨迹最后一步起往前计算 return,每步回传累计梯度 
            for i in reversed(range(len(rewards))):
                action = actions[i]
                state = states[i]
                value = self.v_net(state).squeeze()                         # 使用更新过的价值网络预测价值
                G = returns[i]                                              # (state_dim, )
                probs = self.policy_net(state.unsqueeze(0)).squeeze()       # (action_range, )
                log_prob = torch.log(probs[action])
                policy_loss = -log_prob * (G - value.detach())              # value 是 v_net 给出的,将其 detach 以确保只更新 policy 参数
                policy_loss.backward()        
            self.optimizer_policy.step()    
    
  • 进行训练并绘制性能曲线

    if __name__ == "__main__":
        def moving_average(a, window_size):
            ''' 生成序列 a 的滑动平均序列 '''
            cumulative_sum = np.cumsum(np.insert(a, 0, 0)) 
            middle = (cumulative_sum[window_size:] - cumulative_sum[:-window_size]) / window_size
            r = np.arange(1, window_size-1, 2)
            begin = np.cumsum(a[:window_size-1])[::2] / r
            end = (np.cumsum(a[:-window_size:-1])[::2] / r)[::-1]
            return np.concatenate((begin, middle, end))
    
        def set_seed(env, seed=42):
            ''' 设置随机种子 '''
            env.action_space.seed(seed)
            env.reset(seed=seed)
            random.seed(seed)
            np.random.seed(seed)
            torch.manual_seed(seed)
    
        state_dim = 4                               # 环境观测维度
        action_range = 2                            # 环境动作空间大小
        lr_policy = 2e-3
        lr_value = 3e-3
        num_episodes = 500
        hidden_dim = 64
        gamma = 0.98
        device = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu")
    
        # build environment
        env_name = 'CartPole-v0'
        env = gym.make(env_name, render_mode='rgb_array')
        check_env(env.unwrapped)    # 检查环境是否符合 gym 规范
        set_seed(env, 42)
    
        # build agent
        agent = REINFORCE_Baseline(state_dim, hidden_dim, action_range, lr_policy, lr_value, gamma, device)
    
        # start training
        return_list = []
        for i in range(10):
            with tqdm(total=int(num_episodes / 10), desc='Iteration %d' % i) as pbar:
                for i_episode in range(int(num_episodes / 10)):
                    episode_return = 0
                    transition_dict = {
                        'states': [],
                        'actions': [],
                        'next_states': [],
                        'rewards': [],
                        'dones': []
                    }
                    state, _ = env.reset()
    
                    # 以当前策略交互得到一条轨迹
                    while True:
                        action = agent.take_action(state)
                        next_state, reward, terminated, truncated, _ = env.step(action)
                        transition_dict['states'].append(state)
                        transition_dict['actions'].append(action)
                        transition_dict['next_states'].append(next_state)
                        transition_dict['rewards'].append(reward)
                        transition_dict['dones'].append(terminated or truncated)
                        state = next_state
                        episode_return += reward
                        
                        if terminated or truncated:
                            env.render()
                            break
                        #env.render()
    
                    # 用当前策略收集的数据进行 on-policy 更新
                    agent.update(transition_dict)
    
                    # 更新进度条
                    return_list.append(episode_return)
                    pbar.set_postfix({
                        'episode':
                        '%d' % (num_episodes / 10 * i + i_episode + 1),
                        'return':
                        '%.3f' % episode_return,
                        'ave return':
                        '%.3f' % np.mean(return_list[-10:])
                    })
                    pbar.update(1)
    
        # show policy performence
        mv_return_list = moving_average(return_list, 29)
        episodes_list = list(range(len(return_list)))
        plt.figure(figsize=(12,8))
        plt.plot(episodes_list, return_list, label='raw', alpha=0.5)
        plt.plot(episodes_list, mv_return_list, label='moving ave')
        plt.xlabel('Episodes')
        plt.ylabel('Returns')
        plt.title(f'{agent._get_name()} on CartPole-V0')
        plt.legend()
        plt.savefig(f'./result/{agent._get_name()}.png')
        plt.show()         
    

2.2.3 性能

  • 对比前文介绍的普通 REINFORCE 方法和以上 REINFORCE with baseline 方法的性能曲线,如下
    RL 实践(6)—— CartPole【REINFORCE with baseline & A2C】_第2张图片
    可见引入 baseline 有效降低了方差,且加快了收敛速度

2.3 Advantage Actor-Critic (A2C)

  • 我们使用 2.1 节得到的带基线的随机策略梯度 g θ ( s , a ; b ) g_\theta(s,a;b) gθ(s,a;b) 改写前文的 REINFORCR 算法,基线设置为 b = V π θ ( s ) b = V_{\pi_\theta}(s) b=Vπθ(s),即
    g θ ( s , a ) = △ ▽ θ ln ⁡ π θ ( a ∣ s ) ⋅ [ Q π θ ( s , a ) − V π θ ( s ) ] g_\theta(s,a) \stackrel{\triangle}{=} \triangledown_{\theta}\ln \pi_\theta(a|s) \cdot \Big[Q_{\pi_\theta}(s,a)-V_{\pi_\theta}(s)\Big] gθ(s,a)=θlnπθ(as)[Qπθ(s,a)Vπθ(s)] 其中 Q π θ ( s , a ) − V π θ ( s ) Q_{\pi_\theta}(s,a)-V_{\pi_\theta}(s) Qπθ(s,a)Vπθ(s) 被称作优势函数 (advantage function),因此基于上面公式得到的 actor-critic 方法被称为 advantage actor-critic (A2C)。A2C 属于 actor-critic 方法,有一个策略网络 π θ \pi_\theta πθ 作为 Actor 用于控制 agent 运动,还有一个价值网络 v ω v_\omega vω 作为 Critic,他的评分可以帮助 Actor 改进。两个神经网络的结构与上一节中的完全相同,但是本节和上一节用不同的方法训练两个神经网络

2.3.1 伪代码

  • 这里训练价值网络时不像 REINFORCE with baseline 那样直接优化 mse loss 去靠近真实 return(MC),而是用 mse loss 去优化 Sarsa TD error。具体而言,给定 transition ( s , a , r , s ′ ) (s,a,r,s') (s,a,r,s),如下得到 TD error 的 mse loss
    l ω = 1 2 [ v ω ( s ) − ( r + v ω ( s ′ ) ) ] 2 l_\omega = \frac{1}{2}\Big[v_\omega(s) - \big(r+v_\omega(s')\big)\Big]^2 lω=21[vω(s)(r+vω(s))]2
  • 训练策略网络时利用 Bellman 公式得到 Q Q Q V V V 的关系
    Q π ( s t , a t ) = E S t + 1 ∼ p ( ⋅ ∣ s t , a t ) [ R t + γ V π ( S t + 1 ) ] Q_{\pi}\left(s_{t}, a_{t}\right) = \mathbb{E}_{S_{t+1}\sim p(·|s_t,a_t)}\Big[R_t + \gamma V_\pi(S_{t+1})\Big] Qπ(st,at)=ESt+1p(st,at)[Rt+γVπ(St+1)] 把带基线的随机策略梯度中的 Q π θ ( s , a ) Q_{\pi_\theta}(s,a) Qπθ(s,a) 进行替换
    g θ ( s , a ) = ▽ θ ln ⁡ π θ ( a ∣ s ) ⋅ [ Q π θ ( s , a ) − V π θ ( s ) ] = ▽ θ ln ⁡ π θ ( a ∣ s ) ⋅ [ E S t + 1 [ R t + γ V π θ ( S t + 1 ) ] − V π θ ( s ) ] \begin{aligned} \boldsymbol{g}_\theta\left(s,a\right) & =\triangledown_{\theta}\ln \pi_\theta(a|s) \cdot \Big[Q_{\pi_\theta}(s,a)-V_{\pi_\theta}(s)\Big] \\ & = \triangledown_{\theta}\ln \pi_\theta(a|s) \cdot \Big[\mathbb{E}_{S_{t+1}}\left[R_t+\gamma V_{\pi_\theta}\left(S_{t+1}\right)\right]-V_{\pi_\theta}(s)\Big] \end{aligned} gθ(s,a)=θlnπθ(as)[Qπθ(s,a)Vπθ(s)]=θlnπθ(as)[ESt+1[Rt+γVπθ(St+1)]Vπθ(s)] 使用真实的 transition ( s , a , r , s ′ ) (s,a,r,s') (s,a,r,s) 进行 MC 近似,得到随机策略梯度
    g ~ θ ( s , a ) ≜ [ r + γ ⋅ v ω ( s ′ ) − v ω ( s ) ⏟ T D  Error ] ⋅ ∇ θ ln ⁡ π θ ( a ∣ s ) . \tilde{\boldsymbol{g}}_\theta\left(s,a\right) \triangleq[\underbrace{r+\gamma \cdot v_\omega\left(s'\right)-v_\omega\left(s\right)}_{\mathrm{TD} \text { Error} }] \cdot \nabla_{\boldsymbol{\theta}} \ln \pi_\theta\left(a \mid s\right) . g~θ(s,a)[TD Error r+γvω(s)vω(s)]θlnπθ(as). 用这个随机策略梯度做梯度上升即可优化策略网络
  • A2C 的伪代码如下
    初始化策略网络  π θ  和价值网络  v ω f o r    e p i s o d e    e = 1 → E    d o : 用当前策略 π θ 交互一条轨迹  s 1 , a 1 , r 1 , . . . , s n , a n , r n 计算所有 TD erro r   δ t = r t + γ ⋅ v ω ( s t + 1 ) − v ω ( s t ) 更新  v ω  参数  l ω = 1 2 n ∑ t = 1 n [ δ t ] 2 更新  π θ  参数  θ ← θ + β ⋅ ▽ θ ln ⁡ π θ ( a t ∣ s t ) ⋅ δ t ,   t = 1 , 2 , . . . , n e n d    f o r \begin{aligned} &初始化策略网络 \space \pi_\theta \space 和价值网络 \space v_\omega \\ &for \space\space episode \space\space e=1 \rightarrow E \space\space do :\\ &\quad\quad 用当前策略 \pi_{\theta} 交互一条轨迹\space s_1, a_1, r_1,...,s_n, a_n, r_n \\ & \quad\quad 计算所有 \space \text{TD erro}r \space \delta_t = r_t+\gamma \cdot v_\omega\left(s_{t+1}\right)-v_\omega\left(s_t\right)\\ &\quad\quad 更新 \space v_\omega \space 参数 \space l_\omega = \frac{1}{2n}\sum_{t=1}^n\Big[ \delta_t \Big]^2\\ &\quad\quad更新 \space \pi_\theta \space参数\space \theta \leftarrow \theta + \beta ·\triangledown_{\theta}\ln \pi_\theta(a_t|s_t) · \delta_t , \space t=1,2,...,n \\ &end \space\space for \end{aligned} 初始化策略网络 πθ 和价值网络 vωfor  episode  e=1E  do:用当前策略πθ交互一条轨迹 s1,a1,r1,...,sn,an,rn计算所有 TD error δt=rt+γvω(st+1)vω(st)更新 vω 参数 lω=2n1t=1n[δt]2更新 πθ 参数 θθ+βθlnπθ(atst)δt, t=1,2,...,nend  for

2.3.2 用 A2C 方法解决 CartPole 问题

  • 只需要重新定义 A2C agent,其他代码全部和 REINFORCE with baseline 一致
    class A2C(torch.nn.Module):
        def __init__(self, state_dim, hidden_dim, action_range, actor_lr, critic_lr, gamma, device):
            super().__init__()
            self.gamma = gamma
            self.device = device
            
            self.actor = PolicyNet(state_dim, hidden_dim, action_range).to(device)
            self.critic = VNet(state_dim, hidden_dim).to(device) 
            self.actor_optimizer = torch.optim.Adam(self.actor.parameters(), lr=actor_lr)
            self.critic_optimizer = torch.optim.Adam(self.critic.parameters(), lr=critic_lr)
            
        def take_action(self, state):
            state = torch.tensor(state, dtype=torch.float).to(self.device)
            state = state.unsqueeze(0)
            probs = self.actor(state)
            action_dist = torch.distributions.Categorical(probs)
            action = action_dist.sample()
            return action.item()
    
        def update(self, transition_dict):
            states = torch.tensor(transition_dict['states'], dtype=torch.float).to(self.device)
            actions = torch.tensor(transition_dict['actions']).view(-1, 1).to(self.device)
            rewards = torch.tensor(transition_dict['rewards'], dtype=torch.float).view(-1, 1).to(self.device)
            next_states = torch.tensor(transition_dict['next_states'], dtype=torch.float).to(self.device)
            dones = torch.tensor(transition_dict['dones'], dtype=torch.float).view(-1, 1).to(self.device)
    
            # Cirtic loss 
            td_target = rewards + self.gamma * self.critic(next_states) * (1-dones)
            critic_loss = torch.mean(F.mse_loss(self.critic(states), td_target.detach()))
    
            # Actor loss 
            td_error = td_target - self.critic(states)  
            probs = self.actor(states).gather(1, actions)
            log_probs = torch.log(probs)
            actor_loss = torch.mean(-log_probs * td_error.detach())
    
            # 更新网络参数
            self.actor_optimizer.zero_grad()
            self.critic_optimizer.zero_grad()
            actor_loss.backward()           
            critic_loss.backward()      
            self.actor_optimizer.step()     
            self.critic_optimizer.step()    
    

2.3.3 性能

  • 对比前文介绍的普通 Actor-Critic 方法和以上 A2C 方法的性能曲线,如下
    RL 实践(6)—— CartPole【REINFORCE with baseline & A2C】_第3张图片
    可见普通 Actor-Critic 方法即使交互轨迹数量翻倍也难以收敛,而 A2C 收敛迅速,性能稳定

2.3.4 引入目标网络

  • 之前我们讲 DQN 时提到过关于 bootstrap 迭代的一个问题

    TD bootstrap 是在使用由 DQN 生成的优化目标 TD target 来优化 DQN 网络。这就导致优化目标随着训练进行不断变化,违背了监督学习的 i.i.d 原则,导致训练不稳定

    A2C 中的 critic 网络同样具有此问题,为了稳定训练,我们可以像 DQN 那样引入一个参数更新频率更低的目标网络来稳定 TD target,从而稳定训练过程。考虑到 A2C 本身是 on-policy 方法,这里不适合像 DQN 那样按照一定周期去替换目标网络参数,而是应该使用加权平均的方式来更新。设引入目标网络 v w ′ v_{w'} vw 和更新权重 τ \tau τ,A2C 算法的伪代码变为
    初始化策略网络  π θ   , 价值网络  v ω 和目标网络  v ω ′ f o r    e p i s o d e    e = 1 → E    d o : 用当前策略 π θ 交互一条轨迹  s 1 , a 1 , r 1 , . . . , s n , a n , r n 计算所有 TD erro r   δ t = r t + γ ⋅ v ω ′ ( s t + 1 ) − v ω ( s t ) 更新  v ω  参数  l ω = 1 2 n ∑ t = 1 n [ δ t ] 2 更新  v ω ′  参数  ω ′ ← τ w ′   +   ( 1 − τ ) w 更新  π θ  参数  θ ← θ + β ⋅ ▽ θ ln ⁡ π θ ( a t ∣ s t ) ⋅ δ t ,   t = 1 , 2 , . . . , n e n d    f o r \begin{aligned} &初始化策略网络 \space \pi_\theta \space ,价值网络 \space v_\omega 和目标网络 \space v_{\omega'} \\ &for \space\space episode \space\space e=1 \rightarrow E \space\space do :\\ &\quad\quad 用当前策略 \pi_{\theta} 交互一条轨迹\space s_1, a_1, r_1,...,s_n, a_n, r_n \\ & \quad\quad 计算所有 \space \text{TD erro}r \space \delta_t = r_t+\gamma \cdot v_{\omega'}\left(s_{t+1}\right)-v_\omega\left(s_t\right)\\ &\quad\quad 更新 \space v_\omega \space 参数 \space l_\omega = \frac{1}{2n}\sum_{t=1}^n\Big[ \delta_t \Big]^2\\ &\quad\quad 更新 \space v_{\omega'} \space 参数 \space \omega' \leftarrow \tau w' \space + \space (1-\tau)w \\ &\quad\quad更新 \space \pi_\theta \space参数\space \theta \leftarrow \theta + \beta ·\triangledown_{\theta}\ln \pi_\theta(a_t|s_t) · \delta_t , \space t=1,2,...,n \\ &end \space\space for \end{aligned} 初始化策略网络 πθ ,价值网络 vω和目标网络 vωfor  episode  e=1E  do:用当前策略πθ交互一条轨迹 s1,a1,r1,...,sn,an,rn计算所有 TD error δt=rt+γvω(st+1)vω(st)更新 vω 参数 lω=2n1t=1n[δt]2更新 vω 参数 ωτw + (1τ)w更新 πθ 参数 θθ+βθlnπθ(atst)δt, t=1,2,...,nend  for

  • 带目标网络的的 A2C agent 实现如下,其他代码基本和 A2C 一致

    class A2C_Target(torch.nn.Module):
        def __init__(self, state_dim, hidden_dim, action_range, target_weight, actor_lr, critic_lr, gamma, device):
            super().__init__()
            self.gamma = gamma
            self.device = device
            self.target_weight = target_weight 
    
            self.actor = PolicyNet(state_dim, hidden_dim, action_range).to(device)
            self.critic = VNet(state_dim, hidden_dim).to(device) 
            self.target = VNet(state_dim, hidden_dim).to(device) 
            self.actor_optimizer = torch.optim.Adam(self.actor.parameters(), lr=actor_lr)
            self.critic_optimizer = torch.optim.Adam(self.critic.parameters(), lr=critic_lr)
            
        def take_action(self, state):
            state = torch.tensor(state, dtype=torch.float).to(self.device)
            state = state.unsqueeze(0)
            probs = self.actor(state)
            action_dist = torch.distributions.Categorical(probs)
            action = action_dist.sample()
            return action.item()
    
        def update(self, transition_dict):
            states = torch.tensor(transition_dict['states'], dtype=torch.float).to(self.device)
            actions = torch.tensor(transition_dict['actions']).view(-1, 1).to(self.device)
            rewards = torch.tensor(transition_dict['rewards'], dtype=torch.float).view(-1, 1).to(self.device)
            next_states = torch.tensor(transition_dict['next_states'], dtype=torch.float).to(self.device)
            dones = torch.tensor(transition_dict['dones'], dtype=torch.float).view(-1, 1).to(self.device)
    
            # Cirtic loss 
            td_target = rewards + self.gamma * self.target(next_states) * (1-dones)
            critic_loss = torch.mean(F.mse_loss(self.critic(states), td_target.detach()))
    
            # Actor loss 
            td_error = td_target - self.critic(states)  
            probs = self.actor(states).gather(1, actions)
            log_probs = torch.log(probs)
            actor_loss = torch.mean(-log_probs * td_error.detach())
    
            # 更新网络参数
            self.actor_optimizer.zero_grad()
            self.critic_optimizer.zero_grad()
            actor_loss.backward()           
            critic_loss.backward()      
            self.actor_optimizer.step()     
            self.critic_optimizer.step()    
    
            # 更新 target 网络参数为 target 和 critic 的加权平均
            w = self.target_weight  
            params_target = list(self.target.parameters())
            params_critic = list(self.critic.parameters())
    
            for i in range(len(params_target)):
                new_param = w * params_target[i] + (1 - w) * params_critic[i]
                params_target[i].data.copy_(new_param)
    
  • τ = 0.95 \tau=0.95 τ=0.95 时性能较好,和 A2C 相比如下
    RL 实践(6)—— CartPole【REINFORCE with baseline & A2C】_第4张图片
    可见引入目标网络后收敛更快,收敛后也更稳定

3. 总结

  • 在策略梯度中加入基线 (baseline) 可以降低方差,显著提升实验效果。实践中常用 b = V π ( s ) b = V_\pi(s) b=Vπ(s) 作为 baseline。
    • 可以用基线来改进 REINFORCE 算法。这时我们仍然用真实 return 来估计策略梯度中的 Q Q Q 价值,并引入价值网络 v w v_w vw,使用 MC 方法来估计状态价值函数 V π ( s ) V_\pi(s) Vπ(s) 作为 baseline。如此计算出随机策略梯度后,和原始 REINFORCE 一样用随机策略梯度上升更新策略网络 π θ ( a ∣ s ) π_\theta(a|s) πθ(as)
    • 可以用基线来改进 actor-critic,得到的方法叫做 advantage actor-critic (A2C)。A2C 也有一个策略网络 π θ ( a ∣ s ) π_\theta(a|s) πθ(as) 和一个价值网络 v ω ( s ) v_\omega(s) vω(s)。它使用 TD 算法(Sarsa)来更新价值网络计算随机策略梯度,并同样用梯度上升更新策略网络 π θ ( a ∣ s ) π_\theta(a|s) πθ(as)。为了稳定 TD bootstarp,可以像 DQN 那样引入目标价值网络 v ω ′ ( s ) v_{\omega'}(s) vω(s) 用于计算 TD target,目标网络通过加权平均方式进行 soft update,可以进一步提高 A2C 的性能

你可能感兴趣的:(#,强化学习,#,实践,A2C,REINFORCE,baseline,策略梯度,基线)