- 【sklearn 03】逻辑回归、决策树、支持向量机
@金色海岸
sklearn逻辑回归决策树
逻辑回归、决策树、支持向量机-逻辑回归logisticsregression(逻辑回归)算法是经典的分类算法,基本思想是构造一个概率的拟合函数。决策树决策树的基本思想是根据样例去推断其背后的树形知识表征支持向量机支持向量机SVM(supportvectormachine)的基本思想是寻找最大的间隔的分割超平面。离分割超平面最近的这些样本点称为支持向量机
- 21-梯度累积原理与实现
机器人图像处理
深度学习算法与模型人工智能深度学习YOLO
一、基本概念在深度学习训练的时候,数据的batchsize大小受到GPU内存限制,batchsize大小会影响模型最终的准确性和训练过程的性能。在GPU内存不变的情况下,模型越来越大,那么这就意味着数据的batchsize智能缩小,这个时候,梯度累积(GradientAccumulation)可以作为一种简单的解决方案来解决这个问题。二、Batchsize的作用训练数据的Batchsize大小对训
- 数据结构与算法——二叉树,多叉树的递归遍历、层序遍历,DFS与BFS
Book_熬夜!
数据结构与算法深度优先宽度优先算法数据结构广度优先
文章目录二叉树1.递归遍历2.层序遍历3.多叉树遍历二叉树【子节点】:每个节点下方相连的节点【父节点】:每个节点上方相连的节点【根节点】:最上方没有父节点的节点【叶子节点】:最下方没有子节点的节点【最大深度】:树的最大层数【高度】:节点数减一,即枝数。【满二叉树(PerfectBinaryTree)】:深度为h,则总节点数:2^h-1FullBinaryTree是指一棵二叉树的所有节点要么没有孩子
- Spring Boot 集成高德地图电子围栏
Cloud_.
springboot后端java
摘要:本文手把手教你通过SpringBoot调用高德地图API实现电子围栏功能,涵盖云端围栏创建、设备位置监控与本地算法校验,附带完整代码和避坑经验!一、电子围栏核心原理1.1什么是电子围栏?虚拟地理边界:在地图上划定区域(圆形/多边形),触发进出事件应用场景:员工考勤、物流围栏、儿童安全区域监控技术核心:基于GPS/北斗坐标的位置判断(射线法或API调用)1.2高德地图API能力云端围栏管理:创
- 数据结构与算法——二叉搜索树,使用TreeMap将键值对存储在一棵二叉搜索树的节点
Book_熬夜!
数据结构与算法算法javascript数据结构
二叉搜索树【二叉搜索树(BST)】:对于树中的每个节点,其左子树的每个节点的值都要小于这个节点的值,右子树的每个节点的值都要大于这个节点的值。左小右大。中序遍历结果是有序的,会从小到大排序。7/\49/\\1810(不符合)可以使用TreeMap把键值对存储在一棵二叉搜索树的节点里通过遍历这棵二叉搜索树,比遍历普通的二叉树能更快实现增删查改classTreeNode{constructor(key
- 【人工智能基础2】Tramsformer架构、自然语言处理基础、计算机视觉总结
roman_日积跬步-终至千里
人工智能习题人工智能自然语言处理计算机视觉
文章目录七、Transformer架构1.替代LSTM的原因2.Transformer架构:编码器-解码器架构3.Transformer架构原理八、自然语言处理基础1.语言模型基本概念2.向量语义3.预训练语言模型的基本原理与方法4.DeepSeek基本原理九、计算机视觉七、Transformer架构1.替代LSTM的原因处理极长序列时,效率下降:虽然LSTM设计的初衷是解决长期依赖问题,即让模型
- 怎么做一个AI产品经理?
AI筑梦师
AI产品经理人工智能产品经理
AI产品经理全面进化:在人工智能迅猛发展的时代,产品经理的角色正经历前所未有的转型。从传统的需求捕捉者到技术与商业紧密结合的创新推动者,AI产品经理肩负着将前沿AI技术转化为解决用户痛点的产品的重要任务。随着大数据、云计算和大模型技术的不断成熟,产品经理不仅需要具备敏锐的市场洞察,还必须深刻理解AI技术本质,跨界整合技术、数据与业务优势,从而推动产品的持续创新与落地。本文将全面解析AI产品经理的角
- MV-EB435i立体相机对垃圾分类
开哥kg
pytorch深度学习卷积神经网络分类人工智能
最近在v社区发了一篇文章,懒得转移过来了链接:V社区-机器视觉技术交流社区-MV-EB435i立体相机对垃圾分类我觉得这篇文章对于刚入门深度学习想看点项目学点代码的刚刚好,因为我也是新手,嘻嘻嘻!希望这篇文章对大家有所帮助,如有错误请大家指正。
- 请编写一个Python程序,实现WOA-CNN-BiLSTM鲸鱼算法优化卷积双向长短期记忆神经网络多输入单输出回归预测功能。
2301_81121233
算法神经网络pythonmongodbstormzookeeperspark
实现一个基于鲸鱼优化算法(WOA)优化的卷积双向长短期记忆神经网络(CNN-BiLSTM)的多输入单输出回归预测功能是一个复杂的任务,涉及到多个步骤和组件。由于完整的实现会非常冗长,我将提供一个简化的框架和关键部分的代码示例,帮助你理解如何实现这个功能。请注意,这个示例不会包含所有细节,比如数据集的准备、鲸鱼优化算法的具体实现(WOA是一个元启发式算法,需要单独实现或引用现有库),以及CNN-Bi
- LORA 微调大模型:从入门到入土
大模型.
人工智能开发语言gptagi架构大模型
在当今人工智能领域,预训练的大模型已经成为推动技术发展的核心力量。然而,在实际项目中,我们往往会发现这些预训练模型虽然强大,但直接就去应用于一些特定的任务时,往往无法完全满足需求。这时,微调就成为了必不可少的一步。而在众多微调方法中,LORA全名(Low-RankAdaptation)以高效性和实用性,逐渐成为了许多开发者训练模型的首选项。作为一名小有经验的咸鱼开发者,我深知在实际项目中高效的进行
- Dijkstra算法例题及解析
_gxd_
算法
最短路算法(2)——Dijkstra算法本章一共有三道例题。1.最短路2.TiltheCowsComeHome3.成语接龙1.最短路Description在每年的校赛里,所有进入决赛的同学都会获得一件很漂亮的t-shirt。但是每当我们的工作人员把上百件的衣服从商店运回到赛场的时候,却是非常累的!所以现在他们想要寻找最短的从商店到赛场的路线,你可以帮助他们吗?FormatInput输入包括多组数据
- AI人工智能中的概率论与统计学原理与Python实战:Python实现概率模型
AI天才研究院
AI实战AI大模型企业级应用开发实战大数据人工智能语言模型AILLMJavaPython架构设计AgentRPA
1.背景介绍随着人工智能技术的不断发展,概率论与统计学在人工智能领域的应用越来越广泛。概率论与统计学是人工智能中的基础知识之一,它们在机器学习、深度学习、自然语言处理等领域都有着重要的作用。本文将介绍概率论与统计学的核心概念、算法原理、具体操作步骤以及Python实现方法,并通过具体代码实例进行详细解释。2.核心概念与联系2.1概率论与统计学的区别概率论是一门数学学科,它研究随机事件发生的可能性。
- 如何使用 Python 实现生成对抗网络
NoABug
python生成对抗网络tensorflow
如何使用Python实现生成对抗网络生成对抗网络(GenerativeAdversarialNetwork,GAN)是一种能够生成高质量、逼真图像的深度学习模型。GAN模型由两个神经网络组成:一个生成器和一个判别器。生成器的任务是以噪声为输入,生成看似真实的图像;而判别器则需要根据输入的图像,判断该图像是真实的还是由生成器生成的。下面我们将通过Python代码来实现一个简单的GAN模型。首先,我们
- GAN模型的Python应用——生成对抗网络
代码编织匠人
python生成对抗网络开发语言
GAN模型的Python应用——生成对抗网络生成对抗网络(GenerativeAdversarialNetwork,GAN)是深度学习中的一种重要模型,已经被广泛应用于图像、文本生成等领域。GAN模型由两个神经网络组成:生成器(Generator)和判别器(Discriminator)。生成器用于生成假样本,判别器用于评估真实性。两个神经网络相互博弈,通过一次次迭代训练,最终生成器可以生成足以骗过
- 二值逻辑、三值逻辑到多值逻辑的变迁(含示例)
搏博
人工智能原理算法人工智能机器学习线性代数图像处理数据分析
二值逻辑、三值逻辑到多值逻辑的变迁是一个逻辑体系不断拓展和深化的过程,反映了人们对复杂现象和不确定性问题认识的逐步深入。前文,我们已经探讨过命题逻辑与谓词逻辑,了解了如何用符号语言从浅入深地刻画现实世界。具体可以看我的CSDN文章:人工智能的数学基础之命题逻辑与谓词逻辑(含示例)-CSDN博客人工智能中用到的逻辑可概括地划分为两大类。第一类是经典命题逻辑和一阶谓词逻辑,第二类是泛指除经典逻辑之外的
- ollama下载的DeepSeek的模型(Model)文件在哪里?(C盘下)
神秘泣男子
常见AI大模型部署与应用Ollama部署LLM人工智能ollamallama自然语言处理机器学习
目录一、下载大模型(DeepSeek)2.安装Ollama3.检查安装是否成功二、拉取大模型(DeepSeek)1.打开命令行2.下载模型3.测试下载4.等待下载完成三.模型存放路径这个位置!!在人工智能快速发展的今天,大语言模型已经成为许多人探索和使用的热门技术。而Ollama作为一款轻量级的本地大模型运行工具,让我们能够在个人电脑上体验各种强大的AI模型,如DeepSeek系列。不少用户在安装
- 如何使用Python实现生成对抗网络(GAN)
「已注销」
互联网前沿技术韩进的创作空间全栈开发知识库python生成对抗网络tensorflow深度学习数据分析
生成对抗网络(GAN)是一种深度学习模型,由两个部分组成:生成器和判别器。生成器负责生成与训练数据相似的新数据,而判别器负责判断输入数据是真实的还是由生成器生成的。这两个部分不断相互博弈,直到生成器能够生成非常逼真的数据,使判别器难以区分生成数据和真实数据。下面是一个简单的Python实现,使用TensorFlow和Keras库。在开始之前,请确保已经安装了TensorFlow和Keras。imp
- 【数学基础】线性代数#1向量和矩阵初步
-一杯为品-
数学线性代数矩阵
本系列内容介绍:主要参考资料:《深度学习》[美]伊恩·古德菲洛等著《机器人数学基础》吴福朝张铃著文章为自学笔记,仅供参考。目录标量、向量、矩阵和张量矩阵运算单位矩阵和逆矩阵线性相关和生成子空间范数特殊类型的矩阵和向量特征分解奇异值分解Moore-Penrose伪逆迹运算行列式标量、向量、矩阵和张量标量标量是一个单独的数。向量向量是一列有序排列的数:x=[x1x2⋮xn]\boldsymbolx=\
- 蓝桥杯网络安全春秋赛 Crypto RSA
叁Three
蓝桥杯密码学
蓝桥杯网络安全春秋赛CryptoRSA题目某公司为了保护其重要数据,使用了RSA加密算法。该公司以同一个N为模数,为Alice和Bob分别生成了不同的公钥和与之相应的私钥。Alice和Bob都使用自己的公钥对同一条明文m进行加密,分别得到密文c1和c2。假设你是一名密码安全研究者,你已获取了N值、两个密文和公钥,能否使用RSA的相关知识还原出明文m呢?#!python3.9fromCrypto.U
- AIGC从入门到实战:可能消失的职业和新出现的机会
AGI大模型与大数据研究院
DeepSeekR1&大数据AI人工智能计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
AIGC从入门到实战:可能消失的职业和新出现的机会作者:禅与计算机程序设计艺术1.背景介绍人工智能生成内容(AIGC)正在迅速改变我们的世界。从文本、代码到图像和音乐,AIGC正在各个领域展示其强大的能力,并开始挑战传统的创意产业。本篇文章将深入探讨AIGC的概念、技术原理、应用场景以及其对未来职业的影响,并为读者提供入门AIGC的实用指南。1.1AIGC的兴起AIGC的兴起得益于近年来人工智能技
- 基于内容分块(CDC)的重删算法详解:原理、实现与优化
这个懒人
算法
引言在数据爆炸式增长的时代,存储资源优化成为技术领域的重要课题。重复数据删除(Deduplication)技术通过消除冗余数据副本,可将存储需求降低90%以上。其中基于内容分块(Content-DefinedChunking,CDC)算法凭借其对数据局部修改的强适应性,成为企业级备份系统、云存储服务的核心技术。一、CDC算法核心原理1.1动态分块vs静态分块传统固定分块算法将数据按固定大小(如4K
- 内容创作者必备!Deepseek赋能,让创作更高效
小焱创作
AI改变未来人工智能人工智能写作ai写作深度学习神经网络aichatgpt
内容创作者必备!DeepSeek赋能,让创作更高效在当今信息爆炸的时代,内容创作已成为自媒体博主们展现才华、吸引粉丝的重要途径。然而,面对日益增长的竞争压力和不断变化的用户需求,如何高效、高质量地产出内容成为了摆在我们面前的一大挑战。幸运的是,随着人工智能技术的飞速发展,一款名为DeepSeek的智能工具应运而生,为内容创作者提供了强大的赋能。本文将深入探讨DeepSeek的基本概念、深层次解读、
- 算法-找到字符串中所有字母异位词
程序员南飞
算法数据结构开发语言java
力扣题目:438.找到字符串中所有字母异位词-力扣(LeetCode)题目描述:给定两个字符串s和p,找到s中所有p的异位词的子串,返回这些子串的起始索引。不考虑答案输出的顺序。示例1:输入:s="cbaebabacd",p="abc"输出:[0,6]解释:起始索引等于0的子串是"cba",它是"abc"的异位词。起始索引等于6的子串是"bac",它是"abc"的异位词。示例2:输入:s="aba
- 【面试经验】华为 AI软开 计算产品线(面经+时间线)
litterfinger
面试华为人工智能
一.岗位:AI软开二.时间线:投递08.09,机试08.28,测评08.29;面试均线上,一面09.12,二面09.27,三面09.29(本来是09.19线下二三面,但由于本人有事推迟)三.一面(50min)自我介绍简单介绍一下传统知识图谱建设和大模型对于知识的构建的差异和整体的趋势聊聊实习经历中的提示工程和sft具体的工作AI的一个发展历史流程和相关算法的引进知识图谱建设的总体流程回顾机试:老鼠
- 【北上广深杭大厂AI算法面试题】计算机视觉篇...详解目标检测中的多尺度训练和测试?
努力毕业的小土博^_^
AI算法题库人工智能计算机视觉算法深度学习神经网络目标检测
【北上广深杭大厂AI算法面试题】计算机视觉篇…详解目标检测中的多尺度训练和测试?【北上广深杭大厂AI算法面试题】计算机视觉篇…详解目标检测中的多尺度训练和测试?文章目录【北上广深杭大厂AI算法面试题】计算机视觉篇...详解目标检测中的多尺度训练和测试?前言多尺度训练核心思想:优点与注意点:多尺度测试核心思想:优点与注意点:综合作用参考示例总结欢迎铁子们点赞、关注、收藏!祝大家逢考必过!逢投必中!上
- MVC/MVP/MVVM框架学习总结(二)
每次的天空
mvc学习java
上次已经了解到MVC的知识,现在是扩展实现MVP/MVVM的框架改进本身项目MVVM框架即Model-View-ViewModel框架,是一种软件架构设计模式,以下是具体介绍:核心组件Model(模型):代表应用程序的数据结构和业务逻辑,负责数据的存储、检索、验证和处理,定义业务规则和算法,是应用程序的数据核心。比如在一个电商应用中,商品数据、用户订单数据等的存储和相关逻辑处理都属于Model层。
- 开源模型应用落地-Qwen2-VL-7B-Instruct-vLLM-OpenAI API Client调用
开源技术探险家
开源大语言模型-新手试炼深度学习AI编程AIGC
一、前言学习Qwen2-VL,为我们打开了一扇通往先进人工智能技术的大门。让我们能够深入了解当今最前沿的视觉语言模型的工作原理和强大能力。这不仅拓宽了我们的知识视野,更让我们站在科技发展的潮头,紧跟时代的步伐。Qwen2-VL具有卓越的图像和视频理解能力,以及多语言支持等特性。学习它可以提升我们处理复杂视觉信息的能力,无论是在学术研究中分析图像数据、解读视频内容,还是在实际工作中进行文档处理、解决
- 【时间复杂度常见的计算】
xihongshi547
算法leetcode数据结构
提示:文章写完后,目录可以自动生成,如何生成可参考右边的帮助文档时间复杂度的简单介绍前言一、时间复杂度是什么?二、时间复杂度的计算1.基本步骤2.常见的时间复杂度总结前言对于判断一段代码的好坏,取决于该代码运行的时间与占用的空间,也就是时间复杂度与空间复杂度,本章就先讲一下时间复杂度,主要包含常见的时间复杂度的计算。一、时间复杂度是什么?时间复杂度是衡量算法运行效率的一个重要指标,它表示随着输入规
- ChatGPT、DeepSeek、Grok 三者对比:AI 语言模型的博弈与未来
一ge科研小菜菜
人工智能人工智能
个人主页:一ge科研小菜鸡-CSDN博客期待您的关注1.引言随着人工智能技术的飞速发展,AI语言模型已经成为人机交互、内容创作、代码生成、智能问答等领域的重要工具。其中,ChatGPT(OpenAI)、DeepSeek(中国团队研发)和Grok(xAI,ElonMusk旗下公司)是当前三大具有代表性的AI语言模型。它们在技术架构、应用场景、用户体验、生态开放性等多个维度各具特色,并针对不同的用户需
- 【go从入门到精通】探秘struct结构体转json为什么需要首字母大写?
前网易架构师-高司机
golang从入门到精通golangjsongo结构体首字母大写golang从入门到精通go从入门到精通
目录作者简介:问题抛出分析结论作者简介:高科,先后在IBMPlatformComputing从事网格计算,淘米网,网易从事游戏服务器开发,拥有丰富的C++,go等语言开发经验,mysql,mongo,redis等数据库,设计模式和网络库开发经验,对战棋类,回合制,moba类页游,手游有丰富的架构设计和开发经验。并且深耕深度学习和数据集训练,提供商业化的视觉人工智能检测和预警系统(煤矿,工厂,制造业
- SQL的各种连接查询
xieke90
UNION ALLUNION外连接内连接JOIN
一、内连接
概念:内连接就是使用比较运算符根据每个表共有的列的值匹配两个表中的行。
内连接(join 或者inner join )
SQL语法:
select * fron
- java编程思想--复用类
百合不是茶
java继承代理组合final类
复用类看着标题都不知道是什么,再加上java编程思想翻译的比价难懂,所以知道现在才看这本软件界的奇书
一:组合语法:就是将对象的引用放到新类中即可
代码:
package com.wj.reuse;
/**
*
* @author Administrator 组
- [开源与生态系统]国产CPU的生态系统
comsci
cpu
计算机要从娃娃抓起...而孩子最喜欢玩游戏....
要让国产CPU在国内市场形成自己的生态系统和产业链,国家和企业就不能够忘记游戏这个非常关键的环节....
投入一些资金和资源,人力和政策,让游
- JVM内存区域划分Eden Space、Survivor Space、Tenured Gen,Perm Gen解释
商人shang
jvm内存
jvm区域总体分两类,heap区和非heap区。heap区又分:Eden Space(伊甸园)、Survivor Space(幸存者区)、Tenured Gen(老年代-养老区)。 非heap区又分:Code Cache(代码缓存区)、Perm Gen(永久代)、Jvm Stack(java虚拟机栈)、Local Method Statck(本地方法栈)。
HotSpot虚拟机GC算法采用分代收
- 页面上调用 QQ
oloz
qq
<A href="tencent://message/?uin=707321921&Site=有事Q我&Menu=yes">
<img style="border:0px;" src=http://wpa.qq.com/pa?p=1:707321921:1></a>
- 一些问题
文强chu
问题
1.eclipse 导出 doc 出现“The Javadoc command does not exist.” javadoc command 选择 jdk/bin/javadoc.exe 2.tomcate 配置 web 项目 .....
SQL:3.mysql * 必须得放前面 否则 select&nbs
- 生活没有安全感
小桔子
生活孤独安全感
圈子好小,身边朋友没几个,交心的更是少之又少。在深圳,除了男朋友,没几个亲密的人。不知不觉男朋友成了唯一的依靠,毫不夸张的说,业余生活的全部。现在感情好,也很幸福的。但是说不准难免人心会变嘛,不发生什么大家都乐融融,发生什么很难处理。我想说如果不幸被分手(无论原因如何),生活难免变化很大,在深圳,我没交心的朋友。明
- php 基础语法
aichenglong
php 基本语法
1 .1 php变量必须以$开头
<?php
$a=” b”;
echo
?>
1 .2 php基本数据库类型 Integer float/double Boolean string
1 .3 复合数据类型 数组array和对象 object
1 .4 特殊数据类型 null 资源类型(resource) $co
- mybatis tools 配置详解
AILIKES
mybatis
MyBatis Generator中文文档
MyBatis Generator中文文档地址:
http://generator.sturgeon.mopaas.com/
该中文文档由于尽可能和原文内容一致,所以有些地方如果不熟悉,看中文版的文档的也会有一定的障碍,所以本章根据该中文文档以及实际应用,使用通俗的语言来讲解详细的配置。
本文使用Markdown进行编辑,但是博客显示效
- 继承与多态的探讨
百合不是茶
JAVA面向对象 继承 对象
继承 extends 多态
继承是面向对象最经常使用的特征之一:继承语法是通过继承发、基类的域和方法 //继承就是从现有的类中生成一个新的类,这个新类拥有现有类的所有extends是使用继承的关键字:
在A类中定义属性和方法;
class A{
//定义属性
int age;
//定义方法
public void go
- JS的undefined与null的实例
bijian1013
JavaScriptJavaScript
<form name="theform" id="theform">
</form>
<script language="javascript">
var a
alert(typeof(b)); //这里提示undefined
if(theform.datas
- TDD实践(一)
bijian1013
java敏捷TDD
一.TDD概述
TDD:测试驱动开发,它的基本思想就是在开发功能代码之前,先编写测试代码。也就是说在明确要开发某个功能后,首先思考如何对这个功能进行测试,并完成测试代码的编写,然后编写相关的代码满足这些测试用例。然后循环进行添加其他功能,直到完全部功能的开发。
- [Maven学习笔记十]Maven Profile与资源文件过滤器
bit1129
maven
什么是Maven Profile
Maven Profile的含义是针对编译打包环境和编译打包目的配置定制,可以在不同的环境上选择相应的配置,例如DB信息,可以根据是为开发环境编译打包,还是为生产环境编译打包,动态的选择正确的DB配置信息
Profile的激活机制
1.Profile可以手工激活,比如在Intellij Idea的Maven Project视图中可以选择一个P
- 【Hive八】Hive用户自定义生成表函数(UDTF)
bit1129
hive
1. 什么是UDTF
UDTF,是User Defined Table-Generating Functions,一眼看上去,貌似是用户自定义生成表函数,这个生成表不应该理解为生成了一个HQL Table, 貌似更应该理解为生成了类似关系表的二维行数据集
2. 如何实现UDTF
继承org.apache.hadoop.hive.ql.udf.generic
- tfs restful api 加auth 2.0认计
ronin47
目前思考如何给tfs的ngx-tfs api增加安全性。有如下两点:
一是基于客户端的ip设置。这个比较容易实现。
二是基于OAuth2.0认证,这个需要lua,实现起来相对于一来说,有些难度。
现在重点介绍第二种方法实现思路。
前言:我们使用Nginx的Lua中间件建立了OAuth2认证和授权层。如果你也有此打算,阅读下面的文档,实现自动化并获得收益。SeatGe
- jdk环境变量配置
byalias
javajdk
进行java开发,首先要安装jdk,安装了jdk后还要进行环境变量配置:
1、下载jdk(http://java.sun.com/javase/downloads/index.jsp),我下载的版本是:jdk-7u79-windows-x64.exe
2、安装jdk-7u79-windows-x64.exe
3、配置环境变量:右击"计算机"-->&quo
- 《代码大全》表驱动法-Table Driven Approach-2
bylijinnan
java
package com.ljn.base;
import java.io.BufferedReader;
import java.io.FileInputStream;
import java.io.InputStreamReader;
import java.util.ArrayList;
import java.util.Collections;
import java.uti
- SQL 数值四舍五入 小数点后保留2位
chicony
四舍五入
1.round() 函数是四舍五入用,第一个参数是我们要被操作的数据,第二个参数是设置我们四舍五入之后小数点后显示几位。
2.numeric 函数的2个参数,第一个表示数据长度,第二个参数表示小数点后位数。
例如:
select cast(round(12.5,2) as numeric(5,2))  
- c++运算符重载
CrazyMizzz
C++
一、加+,减-,乘*,除/ 的运算符重载
Rational operator*(const Rational &x) const{
return Rational(x.a * this->a);
}
在这里只写乘法的,加减除的写法类似
二、<<输出,>>输入的运算符重载
&nb
- hive DDL语法汇总
daizj
hive修改列DDL修改表
hive DDL语法汇总
1、对表重命名
hive> ALTER TABLE table_name RENAME TO new_table_name;
2、修改表备注
hive> ALTER TABLE table_name SET TBLPROPERTIES ('comment' = new_comm
- jbox使用说明
dcj3sjt126com
Web
参考网址:http://www.kudystudio.com/jbox/jbox-demo.html jBox v2.3 beta [
点击下载]
技术交流QQGroup:172543951 100521167
[2011-11-11] jBox v2.3 正式版
- [调整&修复] IE6下有iframe或页面有active、applet控件
- UISegmentedControl 开发笔记
dcj3sjt126com
// typedef NS_ENUM(NSInteger, UISegmentedControlStyle) {
// UISegmentedControlStylePlain, // large plain
&
- Slick生成表映射文件
ekian
scala
Scala添加SLICK进行数据库操作,需在sbt文件上添加slick-codegen包
"com.typesafe.slick" %% "slick-codegen" % slickVersion
因为我是连接SQL Server数据库,还需添加slick-extensions,jtds包
"com.typesa
- ES-TEST
gengzg
test
package com.MarkNum;
import java.io.IOException;
import java.util.Date;
import java.util.HashMap;
import java.util.Map;
import javax.servlet.ServletException;
import javax.servlet.annotation
- 为何外键不再推荐使用
hugh.wang
mysqlDB
表的关联,是一种逻辑关系,并不需要进行物理上的“硬关联”,而且你所期望的关联,其实只是其数据上存在一定的联系而已,而这种联系实际上是在设计之初就定义好的固有逻辑。
在业务代码中实现的时候,只要按照设计之初的这种固有关联逻辑来处理数据即可,并不需要在数据库层面进行“硬关联”,因为在数据库层面通过使用外键的方式进行“硬关联”,会带来很多额外的资源消耗来进行一致性和完整性校验,即使很多时候我们并不
- 领域驱动设计
julyflame
VODAO设计模式DTOpo
概念:
VO(View Object):视图对象,用于展示层,它的作用是把某个指定页面(或组件)的所有数据封装起来。
DTO(Data Transfer Object):数据传输对象,这个概念来源于J2EE的设计模式,原来的目的是为了EJB的分布式应用提供粗粒度的数据实体,以减少分布式调用的次数,从而提高分布式调用的性能和降低网络负载,但在这里,我泛指用于展示层与服务层之间的数据传输对
- 单例设计模式
hm4123660
javaSingleton单例设计模式懒汉式饿汉式
单例模式是一种常用的软件设计模式。在它的核心结构中只包含一个被称为单例类的特殊类。通过单例模式可以保证系统中一个类只有一个实例而且该实例易于外界访问,从而方便对实例个数的控制并节约系统源。如果希望在系统中某个类的对象只能存在一个,单例模式是最好的解决方案。
&nb
- logback
zhb8015
loglogback
一、logback的介绍
Logback是由log4j创始人设计的又一个开源日志组件。logback当前分成三个模块:logback-core,logback- classic和logback-access。logback-core是其它两个模块的基础模块。logback-classic是log4j的一个 改良版本。此外logback-class
- 整合Kafka到Spark Streaming——代码示例和挑战
Stark_Summer
sparkstormzookeeperPARALLELISMprocessing
作者Michael G. Noll是瑞士的一位工程师和研究员,效力于Verisign,是Verisign实验室的大规模数据分析基础设施(基础Hadoop)的技术主管。本文,Michael详细的演示了如何将Kafka整合到Spark Streaming中。 期间, Michael还提到了将Kafka整合到 Spark Streaming中的一些现状,非常值得阅读,虽然有一些信息在Spark 1.2版
- spring-master-slave-commondao
王新春
DAOspringdataSourceslavemaster
互联网的web项目,都有个特点:请求的并发量高,其中请求最耗时的db操作,又是系统优化的重中之重。
为此,往往搭建 db的 一主多从库的 数据库架构。作为web的DAO层,要保证针对主库进行写操作,对多个从库进行读操作。当然在一些请求中,为了避免主从复制的延迟导致的数据不一致性,部分的读操作也要到主库上。(这种需求一般通过业务垂直分开,比如下单业务的代码所部署的机器,读去应该也要从主库读取数