高等数学:泰勒公式

注:第三条 e x e^x ex的展开式,在 1 1 1 + 1 2 x 2 +\frac{1}{2}x^2 +21x2之间添上一个 + x +x +x

  1. 1 1 − x = ∑ n = 0 ∞ x n = 1 + x + x 2 + x 3 + ο ( x 3 ) , x ∈ ( − 1 , 1 ) . \begin{aligned}\frac{1}{1-x}=\sum_{n=0}^\infty x^n=1+x+x^2+x^3+\omicron(x^3),x\in(-1,1).\end{aligned} 1x1=n=0xn=1+x+x2+x3+ο(x3),x(1,1).

  2. 1 1 + x = ∑ n = 0 ∞ ( − 1 ) n x n = 1 − x + x 2 − x 3 + ο ( x 3 ) , x ∈ ( − 1 , 1 ) . \begin{aligned}\frac{1}{1+x}=\sum_{n=0}^\infty (-1)^nx^n=1-x+x^2-x^3+\omicron(x^3),x\in(-1,1).\end{aligned} 1+x1=n=0(1)nxn=1x+x2x3+ο(x3),x(1,1).

  3. e x = ∑ n = 0 ∞ x n n ! = 1 + 1 2 x 2 + 1 6 x 3 + ο ( x 3 ) , x ∈ ( − ∞ , + ∞ ) . \begin{aligned}e^x=\sum_{n=0}^\infty \frac{x^n}{n!}=1+\frac{1}{2}x^2+\frac{1}{6}x^3+\omicron(x^3),x\in(-\infty,+\infty).\end{aligned} ex=n=0n!xn=1+21x2+61x3+ο(x3),x(,+).

  4. sin ⁡ x = ∑ n = 0 ∞ ( − 1 ) n x 2 n + 1 ( 2 n + 1 ) ! = x − x 3 6 + ο ( x 3 ) , x ∈ ( − ∞ , + ∞ ) . \begin{aligned}\sin x=\sum_{n=0}^\infty(-1)^n\frac{x^{2n+1}}{(2n+1)!}=x-\frac{x^3}{6}+\omicron(x^3),x\in(-\infty,+\infty).\end{aligned} sinx=n=0(1)n(2n+1)!x2n+1=x6x3+ο(x3),x(,+).

  5. cos ⁡ x = ∑ n = 0 ∞ ( − 1 ) n x 2 n ( 2 n ) ! = 1 − x 2 2 + x 4 24 + ο ( x 4 ) , x ∈ ( − ∞ , + ∞ ) . \begin{aligned}\cos x=\sum_{n=0}^\infty(-1)^n\frac{x^{2n}}{(2n)!}=1-\frac{x^2}{2}+\frac{x^4}{24}+\omicron(x^4),x\in(-\infty,+\infty).\end{aligned} cosx=n=0(1)n(2n)!x2n=12x2+24x4+ο(x4),x(,+).

  6. tan ⁡ x = ∑ n = 0 ∞ B 2 n ( − 4 ) n ( 1 − 4 n ) ( 2 n ) ! x 2 n − 1 = x + x 3 3 + ο ( x 3 ) , x ∈ ( − π 2 , π 2 ) . \begin{aligned}\tan x=\sum_{n=0}^\infty\frac{B_{2n}(-4)^n(1-4^n)}{(2n)!}x^{2n-1}=x+\frac{x^3}{3}+\omicron(x^3),x\in(-\frac{\pi}{2},\frac{\pi}{2}).\end{aligned} tanx=n=0(2n)!B2n(4)n(14n)x2n1=x+3x3+ο(x3),x(2π,2π).

其中 B 2 n B_{2n} B2n B e r n o u l l i \mathrm{Bernoulli} Bernoulli数,定义为 B n = lim ⁡ x → 0 d n d x n [ x e x − 1 ] . \begin{aligned}B_n=\lim_{x\rightarrow0}\frac{d^n}{dx^n}[\frac{x}{e^x-1}].\end{aligned} Bn=x0limdxndn[ex1x].

  1. arcsin ⁡ x = ∑ n = 0 ∞ ( 2 n ) ! 4 n ( n ! ) 2 × x 2 n + 1 2 n + 1 = x + x 3 6 + ο ( x 3 ) , x ∈ [ − 1 , 1 ] \begin{aligned}\arcsin x=\sum_{n=0}^\infty \frac{(2n)!}{4^n(n!)^2}\times\frac{x^{2n+1}}{2n+1}=x+\frac{x^3}{6}+\omicron(x^3),x\in[-1,1]\end{aligned} arcsinx=n=04n(n!)2(2n)!×2n+1x2n+1=x+6x3+ο(x3),x[1,1]

  2. arccos ⁡ x = π 2 − arcsin ⁡ x = π 2 − ∑ n = 0 ∞ ( − 1 ) n x 2 n + 1 2 n + 1 = π 2 − x − x 3 6 + ο ( x 3 ) , x ∈ [ − 1 , 1 ] . \begin{aligned}\arccos x=\frac{\pi}{2}-\arcsin x=\frac{\pi}{2}-\sum_{n=0}^\infty\frac{(-1)^nx^{2n+1}}{2n+1}=\frac{\pi}{2}-x-\frac{x^3}{6}+\omicron(x^3),x\in[-1,1].\end{aligned} arccosx=2πarcsinx=2πn=02n+1(1)nx2n+1=2πx6x3+ο(x3),x[1,1].

注:一般的 T a y l o r Taylor Taylor公式表里面没有标注 arccos ⁡ x \arccos x arccosx的原因是, arccos ⁡ x + arcsin ⁡ x = π 2 \arccos x+\arcsin x=\frac{\pi}{2} arccosx+arcsinx=2π,也就是说,根据 arcsin ⁡ x \arcsin x arcsinx T a y l o r Taylor Taylor公式,就可以直接推出 $\arccos x 的 的 Taylor$了。

  1. arctan ⁡ x = ∑ n = 0 ∞ ( − 1 ) n x 2 n + 1 2 n + 1 = x − x 3 3 + ο ( x 3 ) , x ∈ [ − 1 , 1 ] . \begin{aligned}\arctan x=\sum_{n=0}^\infty\frac{(-1)^nx^{2n+1}}{2n+1}=x-\frac{x^3}{3}+\omicron(x^3),x\in[-1,1].\end{aligned} arctanx=n=02n+1(1)nx2n+1=x3x3+ο(x3),x[1,1].

  2. a r c c o t   x = π 2 − arctan ⁡ x = π 2 − ∑ n = 0 ∞ ( − 1 ) n x 2 n + 1 2 n + 1 = π 2 − x + x 3 3 + ο ( x 3 ) , x ∈ [ − 1 , 1 ] . \begin{aligned}\mathrm{arccot} \,x=\frac{\pi}{2}-\arctan x=\frac{\pi}{2}-\sum_{n=0}^\infty\frac{(-1)^nx^{2n+1}}{2n+1}=\frac{\pi}{2}-x+\frac{x^3}{3}+\omicron(x^3),x\in[-1,1].\end{aligned} arccotx=2πarctanx=2πn=02n+1(1)nx2n+1=2πx+3x3+ο(x3),x[1,1].

这里也是一样,可以直接用 arctan ⁡ x \arctan x arctanx T a y l o r Taylor Taylor公式推出来,就不作过多解释了。

  1. a r c s e c   x = arccos ⁡ ( 1 x ) = π 2 − arcsin ⁡ ( 1 x ) = π 2 − ∑ n = 0 ∞ ( 2 n ) ! 4 n ( n ! ) 2 × ( 1 x ) 2 n + 1 2 n + 1 = π 2 − 1 x − 1 6 x 3 + ο ( x 3 ) , { x ∈ R ∣ x ∉ ( − 1 , 1 ) } . \begin{aligned}\mathrm{arcsec}\,x=\arccos(\frac{1}{x})=\frac{\pi}{2}-\arcsin(\frac{1}{x})\end{aligned} \begin{aligned}=\frac{\pi}{2}-\sum_{n=0}^\infty\frac{(2n)!}{4^n(n!)^2}\times\frac{(\frac{1}{x})^{2n+1}}{2n+1}=\frac{\pi}{2}-\frac{1}{x}-\frac{1}{6x^3}+\omicron(x^3),\{x\in\mathbb{R}|x\notin(-1,1)\}.\end{aligned} arcsecx=arccos(x1)=2πarcsin(x1)=2πn=04n(n!)2(2n)!×2n+1(x1)2n+1=2πx16x31+ο(x3),{xRx/(1,1)}.

至于怎么推导出来的,问就是desmos里图像完全一样。

  1. a r c c s c   x = π 2 − a r c s e c   x = π 2 − ( π 2 − arcsin ⁡ ( 1 x ) ) = arcsin ⁡ ( 1 x ) = ∑ n = 0 ∞ ( 2 n ) ! 4 n ( n ! ) 2 × ( 1 x ) 2 n + 1 2 n + 1 = 1 x + 1 6 x 3 + ο ( 1 x 3 ) , { x ∈ R ∣ x ∉ ( − 1 , 1 ) } . \begin{aligned}\mathbb{arccsc}\,x=\frac{\pi}{2}-\mathbb{arcsec}\,x=\frac{\pi}{2}-(\frac{\pi}{2}-\arcsin(\frac{1}{x}))=\arcsin(\frac{1}{x})\end{aligned}\begin{aligned}=\sum_{n=0}^\infty \frac{(2n)!}{4^n(n!)^2}\times\frac{(\frac{1}{x})^{2n+1}}{2n+1}=\frac{1}{x}+\frac{1}{6x^3}+\omicron(\frac{1}{x^3}),\{x\in\mathbb R|x\notin(-1,1)\}.\end{aligned} arccscx=2πarcsecx=2π(2πarcsin(x1))=arcsin(x1)=n=04n(n!)2(2n)!×2n+1(x1)2n+1=x1+6x31+ο(x31),{xRx/(1,1)}.

  2. ln ⁡ ( 1 + x ) = ∑ n = 0 ∞ ( − 1 ) n x n + 1 n + 1 = x − 1 2 x 2 + 1 3 x 3 + ο ( x 3 ) , x ∈ ( − 1 , 1 ] . \begin{aligned}\ln(1+x)=\sum_{n=0}^\infty(-1)^n\frac{x^{n+1}}{n+1}=x-\frac{1}{2}x^2+\frac{1}{3}x^3+\omicron(x^3),x\in(-1,1].\end{aligned} ln(1+x)=n=0(1)nn+1xn+1=x21x2+31x3+ο(x3),x(1,1].

  3. ( 1 + x ) m = 1 + ∑ n = 1 ∞ m ( m − 1 ) ⋯ ( m − n + 1 ) n ! x n , x ∈ ( − 1 , 1 ) . \begin{aligned}(1+x)^m=1+\sum_{n=1}^\infty\frac{m(m-1)\cdots(m-n+1)}{n!}x^n,x\in(-1,1).\end{aligned} (1+x)m=1+n=1n!m(m1)(mn+1)xn,x(1,1).

  4. cot ⁡ x = ∑ n = 0 ∞ ( − 1 ) n 2 2 n B 2 n ( 2 n ) ! x 2 n − 1 = 1 x − 1 3 x − 1 45 x 3 + ο ( x 3 ) , x ∈ ( 0 , π ) . \begin{aligned}\cot x=\sum_{n=0}^\infty\frac{(-1)^n2^{2n}B_{2n}}{(2n)!}x^{2n-1}=\frac{1}{x}-\frac{1}{3}x-\frac{1}{45}x^3+\omicron(x^3),x\in(0,\pi).\end{aligned} cotx=n=0(2n)!(1)n22nB2nx2n1=x131x451x3+ο(x3),x(0,π).

  5. sec ⁡ x = ∑ n = 0 ∞ ( − 1 ) n E 2 n x 2 n ( 2 n ) ! = 1 + 1 2 x 2 + 5 24 x 4 + ο ( x 4 ) , x ∈ ( − π 2 , π 2 ) . \begin{aligned}\sec x=\sum_{n=0}^\infty\frac{(-1)^nE_{2n}x^{2n}}{(2n)!}=1+\frac{1}{2}x^2+\frac{5}{24}x^4+\omicron(x^4),x\in(-\frac{\pi}{2},\frac{\pi}{2}).\end{aligned} secx=n=0(2n)!(1)nE2nx2n=1+21x2+245x4+ο(x4),x(2π,2π).

其中 E 2 n E_{2n} E2n E u l e r Euler Euler数,定义为 E n = { 1 , n = 0. − ∑ k = 0 n − 1 ( − 1 ) k C 2 n 2 k E k , n ≥ 1. E_n= \begin{cases} 1,n=0.\\[2ex] \begin{aligned}-\sum_{k=0}^{n-1}\end{aligned}(-1)^kC_{2n}^{2k}E_k,n\ge1.\\[2ex] \end{cases} En= 1,n=0.k=0n1(1)kC2n2kEk,n1.

  1. csc ⁡ x = ∑ n = 0 ∞ ( − 1 ) n + 1 2 ( 2 n − 1 − 1 ) B 2 n ( 2 n ) ! x 2 n − 1 = 1 x + 1 6 x + 7 360 x 3 + ο ( x 3 ) , x ∈ ( 0 , π ) . \begin{aligned}\csc x=\sum_{n=0}^\infty\frac{(-1)^{n+1}2(2^{n-1}-1)B_{2n}}{(2n)!}x^{2n-1}=\frac{1}{x}+\frac{1}{6}x+\frac{7}{360}x^3+\omicron(x^3),x\in(0,\pi).\end{aligned} cscx=n=0(2n)!(1)n+12(2n11)B2nx2n1=x1+61x+3607x3+ο(x3),x(0,π).

  2. sinh ⁡ x = ∑ n = 0 ∞ x 2 n + 1 ( 2 n + 1 ) ! = x + 1 3 ! x 3 + ο ( x 3 ) , x ∈ ( − ∞ , + ∞ ) . \begin{aligned}\sinh x=\sum_{n=0}^\infty\frac{x^{2n+1}}{(2n+1)!}=x+\frac{1}{3!}x^3+\omicron(x^3),x\in(-\infty,+\infty).\end{aligned} sinhx=n=0(2n+1)!x2n+1=x+3!1x3+ο(x3),x(,+).

  3. cosh ⁡ x = ∑ n = 0 ∞ x 2 n ( 2 n ) ! = 1 + 1 2 ! x 2 + 1 4 ! x 4 + ο ( x 4 ) , x ∈ ( − ∞ , + ∞ ) . \begin{aligned}\cosh x=\sum_{n=0}^\infty\frac{x^{2n}}{(2n)!}=1+\frac{1}{2!}x^2+\frac{1}{4!}x^4+\omicron(x^4),x\in(-\infty,+\infty).\end{aligned} coshx=n=0(2n)!x2n=1+2!1x2+4!1x4+ο(x4),x(,+).

  4. tanh ⁡ x = ∑ n = 1 ∞ 2 2 n ( 2 2 n − 1 ) B 2 n x 2 n − 1 ( 2 n ) ! = x − 1 3 x 3 + ο ( x 3 ) , x ∈ ( − π 2 , π 2 ) . \begin{aligned}\tanh x=\sum_{n=1}^\infty\frac{2^{2n}(2^{2n}-1)B_{2n}x^{2n-1}}{(2n)!}=x-\frac{1}{3}x^3+\omicron(x^3),x\in(-\frac{\pi}{2},\frac{\pi}{2}).\end{aligned} tanhx=n=1(2n)!22n(22n1)B2nx2n1=x31x3+ο(x3),x(2π,2π).

  5. coth ⁡ x = ∑ n = 0 ∞ ( − 1 ) n − 1 2 2 n B n ( 2 n ! ) x 2 n − 1 = 1 x + 1 3 x − 1 45 x 3 + ο ( x 3 ) , x ∈ ( − π , π ) . \begin{aligned}\coth x=\sum_{n=0}^\infty\frac{(-1)^{n-1}2^{2n}B_{n}}{(2n!)}x^{2n-1}=\frac{1}{x}+\frac{1}{3}x-\frac{1}{45}x^3+\omicron(x^3),x\in(-\pi,\pi).\end{aligned} cothx=n=0(2n!)(1)n122nBnx2n1=x1+31x451x3+ο(x3),x(π,π).

  6. s e c h   x = ∑ n = 0 ∞ ( − 1 ) n E 2 n ( 2 n ) ! x 2 n = 1 − 1 2 ! x 2 + 5 4 ! x 4 + ο ( x 4 ) , x ∈ ( − π 2 , π 2 ) . \begin{aligned}\mathrm{sech}\,x=\sum_{n=0}^\infty\frac{(-1)^nE_{2n}}{(2n)!}x^{2n}=1-\frac{1}{2!}x^2+\frac{5}{4!}x^4+\omicron(x^4),x\in(-\frac{\pi}{2},\frac{\pi}{2}).\end{aligned} sechx=n=0(2n)!(1)nE2nx2n=12!1x2+4!5x4+ο(x4),x(2π,2π).

  7. c s c h   x = ∑ n = 0 ∞ 2 ( − 1 ) n ( 2 2 n − 1 − 1 ) B n ( 2 n ) ! x 2 n − 1 = 1 x − 1 6 x + 7 360 x 3 + ο ( x 3 ) , x ∈ ( − π , π ) . \begin{aligned}\mathrm{csch}\,x=\sum_{n=0}^\infty\frac{2(-1)^n(2^{2n-1}-1)B_n}{(2n)!}x^{2n-1}=\frac{1}{x}-\frac{1}{6}x+\frac{7}{360}x^3+\omicron(x^3),x\in(-\pi,\pi).\end{aligned} cschx=n=0(2n)!2(1)n(22n11)Bnx2n1=x161x+3607x3+ο(x3),x(π,π).

  8. a r c s i n h   x = ∑ n = 0 ∞ ( ( − 1 ) n ( 2 n ) ! 2 2 n ( n ! ) 2 ) x 2 n + 1 2 n + 1 = x − 1 6 x 3 + ο ( x 3 ) , x ∈ ( − 1 , 1 ) . \begin{aligned}\mathrm{arcsinh}\,x=\sum_{n=0}^\infty\begin{pmatrix}\frac{(-1)^n(2n)!}{2^{2n}(n!)^2}\end{pmatrix}\frac{x^{2n+1}}{2n+1}=x-\frac{1}{6}x^3+\omicron(x^3),x\in(-1,1).\end{aligned} arcsinhx=n=0(22n(n!)2(1)n(2n)!)2n+1x2n+1=x61x3+ο(x3),x(1,1).

  9. a r c c o s h   x = ln ⁡ ( 2 x ) − ∑ n = 1 ∞ ( ( − 1 ) n ( 2 n ) ! 2 2 n ( n ! ) 2 ) x − 2 n 2 n = ln ⁡ ( 2 x ) − 1 4 x − 2 − 3 32 x − 4 + ο ( x − 4 ) , { x ∈ R ∣ x ∉ [ − 1 , 1 ] } . \begin{aligned}\mathrm{arccosh}\,x=\ln(2x)-\sum_{n=1}^\infty\begin{pmatrix}\frac{(-1)^n(2n)!}{2^{2n}(n!)^2}\end{pmatrix}\frac{x^{-2n}}{2n}=\ln(2x)-\frac{1}{4}x^{-2}-\frac{3}{32}x^{-4}+\omicron(x^{-4}),\{x\in \mathbb{R}|x\notin[-1,1]\}.\end{aligned} arccoshx=ln(2x)n=1(22n(n!)2(1)n(2n)!)2nx2n=ln(2x)41x2323x4+ο(x4),{xRx/[1,1]}.

  10. a r c t a n h   x = ∑ n = 0 ∞ x 2 n + 1 2 n + 1 = x + 1 3 x 3 + ο ( x 3 ) , x ∈ ( − 1 , 1 ) . \begin{aligned}\mathrm{arctanh}\,x=\sum_{n=0}^\infty\frac{x^{2n+1}}{2n+1}=x+\frac{1}{3}x^3+\omicron(x^3),x\in(-1,1).\end{aligned} arctanhx=n=02n+1x2n+1=x+31x3+ο(x3),x(1,1).

a r c c o t h   x \mathrm{arccoth}\,x arccothx a r c s e c h   x \mathrm{arcsech}\,x arcsechx a r c c s c h   x \mathrm{arccsch}\,x arccschx的公式找不到了。

你可能感兴趣的:(高等数学,高等数学)