微积分常用导数总结 - 清晰版 - 当然每一个都要熟记啦

( C ) ′ = 0 ( x α ) ′ = α x α − 1 ( sin ⁡ ( x ) ) ′ = cos ⁡ ( x ) ( cos ⁡ ( x ) ) ′ = − sin ⁡ ( x ) ( tan ⁡ ( x ) ) ′ = 1 cos ⁡ 2 ( x ) = sec ⁡ 2 ( x ) ( cot ⁡ ( x ) ) ′ = − 1 sin ⁡ 2 ( x ) = csc ⁡ 2 ( x ) ( arcsin ⁡ ( x ) ) ′ = 1 1 − x 2 ( arccos ⁡ ( x ) ) ′ = − 1 1 − x 2 ( arctan ⁡ ( x ) ) ′ = 1 x 2 + 1 ( a r c c o t ( x ) ) ′ = − 1 1 + x 2 ( a x ) ′ = ln ⁡ a ⋅ a x ( log ⁡ a x ) ′ = 1 ln ⁡ a ⋅ 1 x \begin{aligned} &(C)'=0\\ &(x^\alpha)'=\alpha x^{\alpha-1}\\ &(\sin(x))'=\cos(x)\\ &(\cos(x))'=-\sin(x)\\ &(\tan(x))'=\frac{1}{\cos^2(x)}=\sec^2(x)\\ &(\cot(x))'=-\frac{1}{\sin^2(x)}=\csc^2(x)\\ &(\arcsin(x))'=\frac{1}{\sqrt{1-x^2}}\\ &(\arccos(x))'=-\frac{1}{\sqrt{1-x^2}}\\ &(\arctan(x))'=\frac{1}{x^2+1}\\ &({\rm arccot}(x))'=-\frac{1}{1+x^2}\\ &(a^x)'=\ln a\cdot a^x\\ &(\log_ax)'=\frac{1}{\ln a}\cdot\frac{1}{x}\\ \end{aligned} (C)=0(xα)=αxα1(sin(x))=cos(x)(cos(x))=sin(x)(tan(x))=cos2(x)1=sec2(x)(cot(x))=sin2(x)1=csc2(x)(arcsin(x))=1x2 1(arccos(x))=1x2 1(arctan(x))=x2+11(arccot(x))=1+x21(ax)=lnaax(logax)=lna1x1


相关链接

常见函数泰勒公式展开
常用等价无穷小的整理


2021年11月12日18:41:09

你可能感兴趣的:(微积分,概率论,几何学,线性代数)