- 深度学习基因组学+机器学习单细胞分析,当下最火热研究方向!
qwmb919
人工智能深度学习机器学习python
深度学习已经被广泛应用于基因组学研究中,利用已知的训练集对数据的类型和应答结果进行预测,深度学习,可以进行预测和降维分析。深度学习模型的能力更强且更灵活,在适当的训练数据下,深度学习可以在较少人工参与的情况下自动学习特征和规律。调控基因组学,变异检测,致病性评分成功应用。深度学习可以提高基因组数据的可解释性,并将基因组数据转化为可操作的临床信息。深度学习通过强大的深度神经网络模型从高维大数据中自动
- 深度学习之线性代数
ousinka
DJLd2lcoderJava开发者动手学习深度学习深度学习java机器学习
深度学习之线性代数标量如果你从来没有学过线性代数或机器学习,那么你过去的数学经历可能是一次只想一个数字。如果你曾经用钱买个茶叶蛋,或者在付过打车费,那么你已经知道如何做一些基本的事情,比如在数字间相加或相乘。例如,上海的温度现在为13摄氏度。严格来说,我们称仅包含一个数值的叫标量(scalar)。在数学表示法,其中标量变量由普通小写字母表示(例如,x、y和z)。我们用R表示所有(连续)实数标量的空
- 深度学习的应用场景及常用技术
eso1983
深度学习
深度学习作为机器学习的一个重要分支,在众多领域都有广泛的应用,以下是一些主要的应用场景及常用技术。1.应用场景1.计算机视觉图像分类描述:对图像中的内容进行分类,识别出图像中物体所属的类别。例如,在安防领域,通过对监控摄像头拍摄的图像进行分类,判断是否有可疑人员或物品出现;在电商领域,对商品图片进行分类,方便用户搜索和筛选商品。示例:识别图片中的动物是猫还是狗,或者判断一张图片是风景照还是人物照。
- 深入解析:Python中的决策树与随机森林
小鹿( ﹡ˆoˆ﹡ )
Pythonpython决策树随机森林Python
在这个数据驱动的时代,机器学习技术已经成为许多企业和研究机构不可或缺的一部分。其中,决策树和随机森林作为两种强大的算法,在分类和回归任务中表现尤为出色。本文将带领大家深入了解这两种算法在Python中的实现,从基础到实战,逐步揭开它们的神秘面纱。引言决策树是一种非常直观的预测模型,它通过一系列规则对数据进行分割,最终形成树状结构。而随机森林则是基于决策树的一种集成学习方法,通过构建多个决策树并取其
- 无线通信与人工智能技术与发展年度总结
Loving_enjoy
实用技巧人工智能信息与通信
2024年,无线通信与人工智能技术取得了显著的进步和突破,这些技术的革新不仅推动了行业的数字化转型,还为全球经济的持续发展注入了新的活力。以下是对无线通信与人工智能技术在这一年发展的详细总结。####无线通信技术的飞速演进无线通信技术的历史可以追溯到19世纪末,意大利科学家马可尼成功实现无线电波传输,开启了无线通信的大门。然而,直到20世纪后期,无线通信技术才真正开始腾飞,从2G到5G不断演进,如
- 探索Labelbox:打造自定义标注应用的利器!
孔旭澜Renata
探索Labelbox:打造自定义标注应用的利器!去发现同类优质开源项目:https://gitcode.com/项目介绍Labelbox是一款专为企业级客户设计的高级数据标注工具。它允许用户构建自己的定制标注界面(编辑器),提供强大的API和SDK,以适应各种复杂的数据标注需求。无论你是人工智能研究者、数据科学家还是软件开发者,Labelbox都能帮助你高效、精准地处理你的数据。技术分析Label
- 大语言模型丨ChatGPT-4o深度科研应用、论文与项目撰写、数据分析、机器学习、深度学习及AI绘图(BP神经网络、支持向量机、决策树、随机森林、变量降维与特征选择、群优化算法等)
赵钰老师
ChatGPTpython人工智能语言模型深度学习数据分析chatgpt机器学习随机森林
目录第一章、2024大语言模型最新进展与ChatGPT各模型第二章、ChatGPT-4o提示词使用方法与高级技巧(最新加入思维链及逆向工程及GPTs)第三章、ChatGPT4-4o助力日常生活、学习与工作第四章、基于ChatGPT-4o课题申报、论文选题及实验方案设计第五章、基于ChatGPT-4o信息检索、总结分析、论文写作与投稿、专利idea构思与交底书的撰写第六章、ChatGPT-4o编程入
- 【python】在【机器学习】与【数据挖掘】中的应用:从基础到【AI大模型】
小李很执着
杂乱无章机器学习数据挖掘python人工智能语言模型
目录一、Python在数据挖掘中的应用1.1数据预处理数据清洗数据变换数据归一化高级预处理技术1.2特征工程特征选择特征提取特征构造二、Python在机器学习中的应用2.1监督学习分类回归2.2非监督学习聚类降维三、Python在深度学习中的应用3.1深度学习框架TensorFlowPyTorch四、Python在AI大模型中的应用4.1大模型简介4.2GPT-4o实例五、实例验证5.1数据集介绍
- 开源LLMs导览:工作原理、顶级LLM列表对比
万俟淋曦
SomeInsights人工智能AI生成式人工智能大模型LLMchatgpt大语言模型
机器人、人工智能相关领域news/events(专栏目录)本文目录一、开源LLM是什么意思?二、开源LLM如何工作?2.1预训练2.2代币化2.3开源LLM的微调2.4输入编码2.5训练与优化2.6推理三、开源LLM对组织的好处3.1增强的数据安全和隐私3.2节约成本3.3减少供应商依赖性3.4代码透明度四、哪种LLM模式最好?4.1BERT4.2LLaMA(LargeLanguageModelM
- Python软体中使用Scikit-learn库训练简单线性回归模型
清水白石008
Python题库pythonpythonscikit-learn线性回归
Python软体中使用Scikit-learn库训练简单线性回归模型1.引言作为数据科学家和机器学习从业者,我们经常需要处理各种类型的数据,并从中提取有价值的信息。其中,线性回归是最基础也是最常用的机器学习算法之一。它可以帮助我们预测连续型目标变量,在很多实际应用场景中都有广泛应用,比如房价预测、销量预测等。在本文中,我将使用Python的Scikit-learn库,介绍如何训练一个简单的线性回归
- 超实用的Python机器学习教程 - 基于scikit - learn库
AI_DL_CODE
人工智能python机器学习人工智能
一、机器学习简介机器学习的定义与概念机器学习是一门多领域交叉学科,它涉及概率论、统计学、逼近论、凸分析、算法复杂度理论等多门学科。简单来说,机器学习是让计算机从数据中学习规律并进行预测或决策的技术。它旨在构建能够自动从数据中学习模式并进行改进的算法,而无需被明确编程来执行特定任务。例如,我们可以让机器学习算法通过分析大量的历史天气数据来预测未来的天气情况,或者通过分析用户的购物历史来推荐可能感兴趣
- LearnLM: Improving Gemini for Learning
UnknownBody
LLMDaily语言模型人工智能自然语言处理
本文是LLM系列文章,针对《LearnLM:ImprovingGeminiforLearning》的翻译。LearnLM:提升Gemini的学习能力摘要1引言2建模3人类评价设计4结果5结论摘要今天的生成式人工智能系统默认情况下会呈现信息,而不是像人类导师那样让用户参与学习服务。为了解决这些系统的广泛潜在教育用例,我们将注入教学行为的挑战重新定义为一种教学指导,其中培训和评估示例包括描述后续模型中
- 【python】利用 GridSearchCV 和 SVM 进行学生成绩预测
码银
支持向量机机器学习人工智能
在机器学习领域,寻找最优模型参数是一个重要的步骤,它直接影响模型的泛化能力和预测准确性。本文将通过一个具体案例介绍如何使用支持向量机(SVM)和网格搜索(GridSearchCV)来预测学生的成绩,并通过调整参数来优化模型性能。数据集:公众号“码银学编程”后台回复:学生成绩-SVM前些天发现了一个巨牛的人工智能学习网站,通俗易懂,风趣幽默,忍不住分享一下给大家:前言–人工智能教程引言学生的成绩预测
- 机器学习笔记——特征工程
好评笔记
补档机器学习人工智能论文阅读AIGCtransformer深度学习面试
大家好,这里是好评笔记,公主号:Goodnote,专栏文章私信限时Free。本笔记介绍机器学习中常见的特征工程方法、正则化方法和简要介绍强化学习。文章目录特征工程(FzeatureEngineering)1.特征提取(FeatureExtraction)手工特征提取(ManualFeatureExtraction):自动特征提取(AutomatedFeatureExtraction):2.特征选择
- 不同物体运动方向的检测-python
人工智能专属驿站
python开发语言
方法优点适用场景缺点光流法实时性强、支持稠密方向分析视频流中物体整体运动对背景复杂场景鲁棒性差特征点跟踪精确捕捉局部运动特征点明显的物体特征点丢失影响结果帧间差分简单快速,适合实时检测背景稳定、低复杂度场景对噪声和阴影敏感深度摄像头三维方向检测,抗背景干扰能力强需要深度信息的场景需要特殊硬件,成本较高惯性传感器不依赖视觉,适用环境广泛设备本体的运动分析精度受传感器噪声影响机器学习能适应复杂非线性场
- 【学术会议征稿-第二届生成式人工智能与信息安全学术会议(GAIIS 2025)】人工智能与信息安全的魅力
禁默
学术会议人工智能
重要信息时间:2025年2月21日-23日地点:中国杭州官网:http://www.ic-gaiis.org简介2025年第二届生成式人工智能与信息安全将于2025年2月21日-23日在中国杭州举行。主要围绕“生成式人工智能与信息安全”的最新研究展开,紧密聚焦AI的热点和难点问题,深入剖析信息安全核心技术。生成式人工智能与信息安全的关系主要体现在以下几个方面:数据安全:生成式人工智能通常需要大量的
- 《解锁AI黑科技:数据分类聚类与可视化》
人工智能深度学习数据挖掘
在当今数字化时代,数据如潮水般涌来,如何从海量数据中提取有价值的信息,成为了众多领域面临的关键挑战。人工智能(AI)技术的崛起,为解决这一难题提供了强大的工具。其中,能够实现数据分类与聚类,并以可视化形式展现的AI技术,正逐渐成为各行业数据分析和决策的核心力量。数据分类与聚类:AI的核心技能数据分类是将数据划分到预先定义好的类别中,就像把图书馆里的书籍按照不同学科分类摆放,方便读者查找。比如在垃圾
- 园区智能化系统实现管理与服务的智能化转型与创新进阶
快鲸智慧楼宇管理系统
其他
内容概要园区智能化系统的出现,标志着管理与服务向智能化转型的重要一步。这一系统不仅仅是一个技术解决方案,更是一个全面提升园区运营效率与安全性的独特工具。通过集成大数据分析、物联网和人工智能,园区智能化系统能够为各类园区如工业园、产业园、物流园、写字楼与公寓等提供切实可行的解决方案。“智能化管理不仅是未来的发展趋势,更是提升竞争力的必要手段。”在资产管理方面,智能化系统能够实时监控并优化资源的配置,
- DeepSeek R1本地化部署与联网功能实战指南:从零搭建智能对话系统
Coderabo
pythonDeepSeekR1
前言在人工智能技术快速发展的今天,如何将先进的对话模型DeepSeekR1部署到本地环境并赋予其联网能力,成为许多开发者和企业关注的重点。本文将深入讲解完整的本地化部署流程,并通过实例代码演示如何为模型添加实时网络访问功能。一、环境准备与基础架构1.1硬件需求推荐配置:NVIDIAGPU(RTX3090或更高)+32GB内存+50GB存储空间最低配置:CPU(支持AVX2指令集)+16GB内存+3
- Meta首席科学家Yann LeCun预言:5年内AI架构将颠覆,当前大模型的4大核心缺陷
机器小乙
人工智能
✨引言:一场颠覆AI行业的预言在2025冬季达沃斯“技术辩论”现场,Meta首席AI科学家、图灵奖得主杨立昆(YannLeCun)抛出一个震撼观点:“当前的大语言模型(LLM)范式将在3-5年内被淘汰。”这位深度学习先驱的论断,不仅直指ChatGPT等明星产品的技术天花板,更揭示了下一代AI进化的核心路径——构建理解物理世界的“世界模型”(WorldModel)。作为Meta人工智能实验室负责人,
- AI编程风潮下的生产力革命:从 Copilot 到 Trae
机器小乙
AI编程
AI编程风潮下的生产力革命:从Copilot到Trae前言在人工智能飞速发展的背景下,“AI编程”已经不再是概念炒作,而逐渐成为真实可落地的开发模式。从最初的GitHubCopilot到如今字节跳动的Trae,以及各种聚焦不同场景的AI编程产品如Cursor、Bolt.new、ReplitGhostwriter等,都在加速软件研发流程。本文将结合一些常见使用场景,并通过简短代码示例,让你对AI编程
- 昆虫机器人:从仿生设计到未来应用
机器小乙
机器人
目录引言:从科幻到现实的启示仿生昆虫机器人:技术突破与功能解析应用场景:农业与灾后救援的革新技术难点:微型机器人研发的挑战未来趋势:智能化与群体协作的潜力总结:昆虫机器人技术的广阔前景1.引言:从科幻到现实的启示还记得阿西莫夫的《奇幻之旅》吗?科学家通过微型潜艇进入人体进行探险,这种场景曾是科幻迷的梦想。如今,随着人工智能和仿生设计的发展,这些奇思妙想正在逐步成为现实。最近,《科学机器人》期刊的一
- 【AI人工智能】DeepSeek R1:你需要知道的一切
大名顶顶
人工智能人工智能AIDeepSeek程序员计算机编程开源
我们将在本博客中介绍的关于DeepSeekR1的所有你需要知道的一切内容,请坚持认真读完,必有收获:DeepSeekR1简要概述主要特点与能力开源与可访问性模型架构强化学习训练变体与精简模型使用案例与应用从专有模型迁移到开源模型1.DeepSeekR1简要概述大语言模型(LLM)研究领域正在迅速发展,每一个新模型都在推动机器能力的边界。DeepSeekR1是由DeepSeek于2025年1月20日
- 机器学习强基计划7-6:图文详解层次聚类AGNES算法(附Python实现)_agnes聚类算法python代码
软件开发Java
2024年程序员学习机器学习算法聚类
先自我介绍一下,小编浙江大学毕业,去过华为、字节跳动等大厂,目前阿里P7深知大多数程序员,想要提升技能,往往是自己摸索成长,但自己不成体系的自学效果低效又漫长,而且极易碰到天花板技术停滞不前!因此收集整理了一份《2024年最新Python全套学习资料》,初衷也很简单,就是希望能够帮助到想自学提升又不知道该从何学起的朋友。既有适合小白学习的零基础资料,也有适合3年以上经验的小伙伴深入学习提升的进阶课
- 【人工智能时代】-Deepseek用到的技术架构
xiaoli8748_软件开发
人工智能
以下是DeepSeek技术架构的详细介绍:1.混合专家架构(MoE)DeepSeek-V3采用了混合专家(Mixture-of-Experts,MoE)架构,这种架构通过将模型分解为多个“专家”网络来处理不同的输入特征。具体配置如下:层数:61层,其中58层为MoE层。专家数量:每层有257个专家(1个共享专家+256个路由专家),整个模型共有14,906个专家。激活机制:每个Token激活9个专
- Chrome浏览器删除网站cookies的解决方案
爱编程的喵喵
Windows实用技巧chromecookiecookies
大家好,我是爱编程的喵喵。双985硕士毕业,现担任全栈工程师一职,热衷于将数据思维应用到工作与生活中。从事机器学习以及相关的前后端开发工作。曾在阿里云、科大讯飞、CCF等比赛获得多次Top名次。现为CSDN博客专家、人工智能领域优质创作者。喜欢通过博客创作的方式对所学的知识进行总结与归纳,不仅形成深入且独到的理解,而且能够帮助新手快速入门。 本文主要介绍了Chrome浏览器删除网站cooki
- 当区块链遇见AI:智能合约如何驱动下一代 DApps
威哥说编程
人工智能区块链ai
随着区块链技术和人工智能(AI)在各自领域的迅速发展,二者的结合逐渐成为了推动未来技术创新的重要力量。特别是在去中心化应用(DApps)领域,区块链与AI的结合有可能彻底改变我们对智能合约、数据处理、决策制定等方面的理解。智能合约(SmartContracts)作为区块链的核心组成部分,能够在无信任环境下自动执行合同条款。而AI则能赋予智能合约“自主学习”和“智能决策”的能力,使得DApps的功能
- 如何在本地电脑上安装和使用 DeepSeek R-1
知识大胖
NVIDIAGPU和大语言模型开发教程电脑
简介似乎每个人都在谈论DeepSeekR-1是中国人工智能公司DeepSeek开发的全新开源人工智能语言模型。一些用户声称,其推理能力与OpenAI的o1相当,甚至更好。目前,DeepSeek是免费使用的,这对用户来说是个好消息,但也带来了一些疑问。随着用户量的激增,他们如何管理服务器成本?硬件运行成本不可能便宜吧?这里最合乎逻辑的一点是——数据。数据是人工智能模型的命脉。他们可能以某种方式收集用
- 机器学习-期末复习题
泡椒鸡jo
期末复习机器学习python
给人脸打上标签再让模型进行学习训练的方法,属于()强化学习B.半监督学习C.监督学习D.无监督学习在机器学习中,用计算机处理一副图像,维度是:上万维B.二维C.三维D.一维以下关于降维的说法不正确的是?A.降维是将训练样本从高维空间转换到低维空间B.降维不会对数据产生损伤C.通过降维可以更有效地发掘有意义的数据结构D.降维将有助于实现数据可视化将原始数据进行集成、变换、维度规约、数值规约是在以
- 智能化Kubernetes管理:AI与ChatGPT提升运维效率的创新实践
大大宝的博客
k8skubernetes人工智能chatgpt
摘要随着云计算技术的飞速发展,Kubernetes(K8s)已成为企业进行容器化应用管理的标准平台。然而,Kubernetes集群的管理在复杂度、规模和资源优化等方面仍然面临巨大挑战。传统的Kubernetes运维方式往往依赖手动操作,导致效率低下,且容易产生人为错误。随着人工智能(AI)技术的成熟,特别是基于自然语言处理(NLP)的智能体如ChatGPT的出现,AI智能体能够在Kubernete
- jQuery 键盘事件keydown ,keypress ,keyup介绍
107x
jsjquerykeydownkeypresskeyup
本文章总结了下些关于jQuery 键盘事件keydown ,keypress ,keyup介绍,有需要了解的朋友可参考。
一、首先需要知道的是: 1、keydown() keydown事件会在键盘按下时触发. 2、keyup() 代码如下 复制代码
$('input').keyup(funciton(){  
- AngularJS中的Promise
bijian1013
JavaScriptAngularJSPromise
一.Promise
Promise是一个接口,它用来处理的对象具有这样的特点:在未来某一时刻(主要是异步调用)会从服务端返回或者被填充属性。其核心是,promise是一个带有then()函数的对象。
为了展示它的优点,下面来看一个例子,其中需要获取用户当前的配置文件:
var cu
- c++ 用数组实现栈类
CrazyMizzz
数据结构C++
#include<iostream>
#include<cassert>
using namespace std;
template<class T, int SIZE = 50>
class Stack{
private:
T list[SIZE];//数组存放栈的元素
int top;//栈顶位置
public:
Stack(
- java和c语言的雷同
麦田的设计者
java递归scaner
软件启动时的初始化代码,加载用户信息2015年5月27号
从头学java二
1、语言的三种基本结构:顺序、选择、循环。废话不多说,需要指出一下几点:
a、return语句的功能除了作为函数返回值以外,还起到结束本函数的功能,return后的语句
不会再继续执行。
b、for循环相比于whi
- LINUX环境并发服务器的三种实现模型
被触发
linux
服务器设计技术有很多,按使用的协议来分有TCP服务器和UDP服务器。按处理方式来分有循环服务器和并发服务器。
1 循环服务器与并发服务器模型
在网络程序里面,一般来说都是许多客户对应一个服务器,为了处理客户的请求,对服务端的程序就提出了特殊的要求。
目前最常用的服务器模型有:
·循环服务器:服务器在同一时刻只能响应一个客户端的请求
·并发服务器:服
- Oracle数据库查询指令
肆无忌惮_
oracle数据库
20140920
单表查询
-- 查询************************************************************************************************************
-- 使用scott用户登录
-- 查看emp表
desc emp
- ext右下角浮动窗口
知了ing
JavaScriptext
第一种
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/
- 浅谈REDIS数据库的键值设计
矮蛋蛋
redis
http://www.cnblogs.com/aidandan/
原文地址:http://www.hoterran.info/redis_kv_design
丰富的数据结构使得redis的设计非常的有趣。不像关系型数据库那样,DEV和DBA需要深度沟通,review每行sql语句,也不像memcached那样,不需要DBA的参与。redis的DBA需要熟悉数据结构,并能了解使用场景。
- maven编译可执行jar包
alleni123
maven
http://stackoverflow.com/questions/574594/how-can-i-create-an-executable-jar-with-dependencies-using-maven
<build>
<plugins>
<plugin>
<artifactId>maven-asse
- 人力资源在现代企业中的作用
百合不是茶
HR 企业管理
//人力资源在在企业中的作用人力资源为什么会存在,人力资源究竟是干什么的 人力资源管理是对管理模式一次大的创新,人力资源兴起的原因有以下点: 工业时代的国际化竞争,现代市场的风险管控等等。所以人力资源 在现代经济竞争中的优势明显的存在,人力资源在集团类公司中存在着 明显的优势(鸿海集团),有一次笔者亲自去体验过红海集团的招聘,只 知道人力资源是管理企业招聘的 当时我被招聘上了,当时给我们培训 的人
- Linux自启动设置详解
bijian1013
linux
linux有自己一套完整的启动体系,抓住了linux启动的脉络,linux的启动过程将不再神秘。
阅读之前建议先看一下附图。
本文中假设inittab中设置的init tree为:
/etc/rc.d/rc0.d
/etc/rc.d/rc1.d
/etc/rc.d/rc2.d
/etc/rc.d/rc3.d
/etc/rc.d/rc4.d
/etc/rc.d/rc5.d
/etc
- Spring Aop Schema实现
bijian1013
javaspringAOP
本例使用的是Spring2.5
1.Aop配置文件spring-aop.xml
<?xml version="1.0" encoding="UTF-8"?>
<beans
xmlns="http://www.springframework.org/schema/beans"
xmln
- 【Gson七】Gson预定义类型适配器
bit1129
gson
Gson提供了丰富的预定义类型适配器,在对象和JSON串之间进行序列化和反序列化时,指定对象和字符串之间的转换方式,
DateTypeAdapter
public final class DateTypeAdapter extends TypeAdapter<Date> {
public static final TypeAdapterFacto
- 【Spark八十八】Spark Streaming累加器操作(updateStateByKey)
bit1129
update
在实时计算的实际应用中,有时除了需要关心一个时间间隔内的数据,有时还可能会对整个实时计算的所有时间间隔内产生的相关数据进行统计。
比如: 对Nginx的access.log实时监控请求404时,有时除了需要统计某个时间间隔内出现的次数,有时还需要统计一整天出现了多少次404,也就是说404监控横跨多个时间间隔。
Spark Streaming的解决方案是累加器,工作原理是,定义
- linux系统下通过shell脚本快速找到哪个进程在写文件
ronin47
一个文件正在被进程写 我想查看这个进程 文件一直在增大 找不到谁在写 使用lsof也没找到
这个问题挺有普遍性的,解决方法应该很多,这里我给大家提个比较直观的方法。
linux下每个文件都会在某个块设备上存放,当然也都有相应的inode, 那么透过vfs.write我们就可以知道谁在不停的写入特定的设备上的inode。
幸运的是systemtap的安装包里带了inodewatch.stp,位
- java-两种方法求第一个最长的可重复子串
bylijinnan
java算法
import java.util.Arrays;
import java.util.Collections;
import java.util.List;
public class MaxPrefix {
public static void main(String[] args) {
String str="abbdabcdabcx";
- Netty源码学习-ServerBootstrap启动及事件处理过程
bylijinnan
javanetty
Netty是采用了Reactor模式的多线程版本,建议先看下面这篇文章了解一下Reactor模式:
http://bylijinnan.iteye.com/blog/1992325
Netty的启动及事件处理的流程,基本上是按照上面这篇文章来走的
文章里面提到的操作,每一步都能在Netty里面找到对应的代码
其中Reactor里面的Acceptor就对应Netty的ServerBo
- servelt filter listener 的生命周期
cngolon
filterlistenerservelt生命周期
1. servlet 当第一次请求一个servlet资源时,servlet容器创建这个servlet实例,并调用他的 init(ServletConfig config)做一些初始化的工作,然后调用它的service方法处理请求。当第二次请求这个servlet资源时,servlet容器就不在创建实例,而是直接调用它的service方法处理请求,也就是说
- jmpopups获取input元素值
ctrain
JavaScript
jmpopups 获取弹出层form表单
首先,我有一个div,里面包含了一个表单,默认是隐藏的,使用jmpopups时,会弹出这个隐藏的div,其实jmpopups是将我们的代码生成一份拷贝。
当我直接获取这个form表单中的文本框时,使用方法:$('#form input[name=test1]').val();这样是获取不到的。
我们必须到jmpopups生成的代码中去查找这个值,$(
- vi查找替换命令详解
daizj
linux正则表达式替换查找vim
一、查找
查找命令
/pattern<Enter> :向下查找pattern匹配字符串
?pattern<Enter>:向上查找pattern匹配字符串
使用了查找命令之后,使用如下两个键快速查找:
n:按照同一方向继续查找
N:按照反方向查找
字符串匹配
pattern是需要匹配的字符串,例如:
1: /abc<En
- 对网站中的js,css文件进行打包
dcj3sjt126com
PHP打包
一,为什么要用smarty进行打包
apache中也有给js,css这样的静态文件进行打包压缩的模块,但是本文所说的不是以这种方式进行的打包,而是和smarty结合的方式来把网站中的js,css文件进行打包。
为什么要进行打包呢,主要目的是为了合理的管理自己的代码 。现在有好多网站,你查看一下网站的源码的话,你会发现网站的头部有大量的JS文件和CSS文件,网站的尾部也有可能有大量的J
- php Yii: 出现undefined offset 或者 undefined index解决方案
dcj3sjt126com
undefined
在开发Yii 时,在程序中定义了如下方式:
if($this->menuoption[2] === 'test'),那么在运行程序时会报:undefined offset:2,这样的错误主要是由于php.ini 里的错误等级太高了,在windows下错误等级
- linux 文件格式(1) sed工具
eksliang
linuxlinux sed工具sed工具linux sed详解
转载请出自出处:
http://eksliang.iteye.com/blog/2106082
简介
sed 是一种在线编辑器,它一次处理一行内容。处理时,把当前处理的行存储在临时缓冲区中,称为“模式空间”(pattern space),接着用sed命令处理缓冲区中的内容,处理完成后,把缓冲区的内容送往屏幕。接着处理下一行,这样不断重复,直到文件末尾
- Android应用程序获取系统权限
gqdy365
android
引用
如何使Android应用程序获取系统权限
第一个方法简单点,不过需要在Android系统源码的环境下用make来编译:
1. 在应用程序的AndroidManifest.xml中的manifest节点
- HoverTree开发日志之验证码
hvt
.netC#asp.nethovertreewebform
HoverTree是一个ASP.NET的开源CMS,目前包含文章系统,图库和留言板功能。代码完全开放,文章内容页生成了静态的HTM页面,留言板提供留言审核功能,文章可以发布HTML源代码,图片上传同时生成高品质缩略图。推出之后得到许多网友的支持,再此表示感谢!留言板不断收到许多有益留言,但同时也有不少广告,因此决定在提交留言页面增加验证码功能。ASP.NET验证码在网上找,如果不是很多,就是特别多
- JSON API:用 JSON 构建 API 的标准指南中文版
justjavac
json
译文地址:https://github.com/justjavac/json-api-zh_CN
如果你和你的团队曾经争论过使用什么方式构建合理 JSON 响应格式, 那么 JSON API 就是你的 anti-bikeshedding 武器。
通过遵循共同的约定,可以提高开发效率,利用更普遍的工具,可以是你更加专注于开发重点:你的程序。
基于 JSON API 的客户端还能够充分利用缓存,
- 数据结构随记_2
lx.asymmetric
数据结构笔记
第三章 栈与队列
一.简答题
1. 在一个循环队列中,队首指针指向队首元素的 前一个 位置。
2.在具有n个单元的循环队列中,队满时共有 n-1 个元素。
3. 向栈中压入元素的操作是先 移动栈顶指针&n
- Linux下的监控工具dstat
网络接口
linux
1) 工具说明dstat是一个用来替换 vmstat,iostat netstat,nfsstat和ifstat这些命令的工具, 是一个全能系统信息统计工具. 与sysstat相比, dstat拥有一个彩色的界面, 在手动观察性能状况时, 数据比较显眼容易观察; 而且dstat支持即时刷新, 譬如输入dstat 3, 即每三秒收集一次, 但最新的数据都会每秒刷新显示. 和sysstat相同的是,
- C 语言初级入门--二维数组和指针
1140566087
二维数组c/c++指针
/*
二维数组的定义和二维数组元素的引用
二维数组的定义:
当数组中的每个元素带有两个下标时,称这样的数组为二维数组;
(逻辑上把数组看成一个具有行和列的表格或一个矩阵);
语法:
类型名 数组名[常量表达式1][常量表达式2]
二维数组的引用:
引用二维数组元素时必须带有两个下标,引用形式如下:
例如:
int a[3][4]; 引用:
- 10点睛Spring4.1-Application Event
wiselyman
application
10.1 Application Event
Spring使用Application Event给bean之间的消息通讯提供了手段
应按照如下部分实现bean之间的消息通讯
继承ApplicationEvent类实现自己的事件
实现继承ApplicationListener接口实现监听事件
使用ApplicationContext发布消息