Codeforces Round 846 (Div. 2) E. Josuke and Complete Graph 详解 数论分块

题目大意

Codeforces Round 846 (Div. 2) E. Josuke and Complete Graph 详解 数论分块_第1张图片
题意来源


解题思路

  • 首先我们假设存在 x x x满足 a , b ∈ [ l , r ] , g c d ( a , b ) = x a,b\in[l,r],gcd(a,b)=x a,b[l,r],gcd(a,b)=x
  • 那么肯定 g c d ( ⌊ a / x ⌋ , ⌊ b / x ⌋ ) = 1 就是互质 gcd(\lfloor a/x \rfloor, \lfloor b/x \rfloor)=1就是互质 gcd(⌊a/x,b/x⌋)=1就是互质
  • 假设 a < b aa<b
  • 那么 b 最小可以取 = ( ⌊ a / x ⌋ + 1 ) ∗ x b最小可以取 = (\lfloor a/x \rfloor +1)*x b最小可以取=(⌊a/x+1)x 因为 ( ⌊ a / x ⌋ + 1 ) 和 ⌊ a / x ⌋ (\lfloor a/x \rfloor +1) 和 \lfloor a/x \rfloor (⌊a/x+1)a/x肯定互质
  • 那么我们可以贪心的找两个最小的倍数,就是 k x 和 ( k + 1 ) x ∈ [ l , r ] kx和(k+1)x\in[l,r] kx(k+1)x[l,r]
  • 那么分类讨论一下
    • 如果 x ∈ [ l , r ] x\in[l,r] x[l,r]那么只要 x , 2 x ∈ [ l , r ] x,2x\in[l,r] x,2x[l,r]即可
    • 如果 x < l xx<l那么就是公式 k x ≥ l & & ( k + 1 ) x ≤ r kx\geq l \&\&(k+1)x\leq r kxl&&(k+1)xr
    • 那么根据贪心对于同一个 x x x,最小的 k = ⌈ l / x ⌉ k=\lceil l/x \rceil k=l/x,那么 x ≤ r / ( ⌈ l / x ⌉ + 1 ) x\leq r/(\lceil l/x \rceil+1) xr/(⌈l/x+1)
    • 看到上面的向上取整,我们可以想到算法数论分块,因为对于同一个范围内的 x x x,这个最小的k值都是固定的
    • 现在把 ⌈ l / x ⌉ = ⌊ ( l − 1 ) / x + 1 ⌋ \lceil l/x \rceil = \lfloor (l-1)/x+1\rfloor l/x=⌊(l1)/x+1就可以带入数论分块了
    • x ≤ r / ( ⌊ ( l − 1 ) / x + 1 ⌋ + 1 ) x\leq r/(\lfloor (l-1)/x+1\rfloor+1) xr/(⌊(l1)/x+1+1)

代码实现

#include 
#include 
#include 
#include 
#include 
using namespace std;
const int maxn = 3005;
typedef long long ll;
typedef pair<int,int> PII;
typedef pair<ll,ll> PLL;
const ll mod = 998244353;
vector<int> arr;
ll sum, pre;
int main() {
    // freopen("1.txt","r",stdin);
    int T;
    scanf("%d",&T);
    while(T --) {
        ll l,r;
        scanf("%lld%lld",&l,&r);
		ll ans = max(0ll,r/2-l+1);
		for(ll L = 1, R = 1; L < l; L = R + 1)	{
			ll num = (l-1)/L;
			R = min((l-1)/num,l-1); // 数论分块的右边界
			ll now = r/(num+2); // 上面不等式的右边
			// printf("now = %lld ans = %lld L = %lld R = %lld\n",now,ans,L,R);
			if(now >= L) ans += (min(now,R)-L+1);

		}
		printf("%lld\n",ans);
    } 
    return 0;
}

你可能感兴趣的:(数论,数论)