tracking线程只是判断当前帧是否需要加入关键帧,并没有真的加入地图,因为tracking线程的功能是局部定位,而处理地图中的关键帧、地图点如何加入,如何删除的工作是在localmapping线程完成。
认清几个锁与布尔参数
线程的通信与相互影响在ORB比较复杂,需要好好缕清思路。
mbStopRequested,由RequestStop函数设定,主要是在回环线程里,在运行全局优化时,以及检测后,调整Loop时,localMapping需要暂停。
mbStopped:由stop()函数设定。mbNotStop: 由SetNotStop()设定。 这两个真是把人搞得头大。在Tracking线程,如果mapping线程被要求暂停,也就是mpLocalMapper->isStopped() || mpLocalMapper->stopRequested() 为真,则停止往里添加关键帧。如果可以添加关键帧,则Tracking线程添加关键帧时,必须保证LocaMapping不能被终止,则mbNotStop需要为真。
mpLocalMapper->Release(); 此函数在全局优化以及调整Loop后使用,目的是使mbStopped,mbStopRequested都置为false。且清空 mlNewKeyFrames。
mMutexStop锁,主要是在设置以上两个参数时使用,防止同时更改。
mMutexAccept锁,也是防止在设置mbAcceptKeyFrames时保持异步。mMutexNewKFs也是同样的原理。
首先贴出三位博主链接:
localmapping2线程流程图:https://blog.csdn.net/weixin_38358435/article/details/81735842
localmapping2线程流程图:https://blog.csdn.net/u012936940/article/details/82185058
localmapping2代码详解:https://blog.csdn.net/u012936940/article/details/81784080
上图就是运行localmapping的流程图,还有另一位博主整理的:
下面来看看localmapping的文档:
#include “LocalMapping.h”
#include “LoopClosing.h”
#include “ORBmatcher.h”
#include “Optimizer.h”
#include
namespace ORB_SLAM
{
//构造函数
LocalMapping::LocalMapping(Map pMap):
mbResetRequested(false), mpMap(pMap), mbAbortBA(false), mbStopped(false), mbStopRequested(false), mbAcceptKeyFrames(true)
{
}
//设置loopcloser线程
void LocalMapping::SetLoopCloser(LoopClosing pLoopCloser)
{
mpLoopCloser = pLoopCloser;
}
//设置tracking线程
void LocalMapping::SetTracker(Tracking *pTracker)
{
mpTracker=pTracker;
}
//这便是运行的关键部分,整个流程都是这个运行线程
void LocalMapping::Run()
{
//这是ros设置频率的函数,500Hz,设置运行频率,保证while每1/500执行一次
ros::Rate r(500);
while(ros::ok())
{
// Check if there are keyframes in the queue
//检测队列,等待处理的关键帧不为空,即存在需要处理的关键帧
if(CheckNewKeyFrames())
{
// Tracking will see that Local Mapping is busy
//一旦线程接受了一个关键帧,那么此时就将mbAcceptKeyFrames设置为false
SetAcceptKeyFrames(false);
//void LocalMapping::SetAcceptKeyFrames(bool flag)
//{
// boost::mutex::scoped_lock lock(mMutexAccept);
// mbAcceptKeyFrames=flag;
//}
// BoW conversion and insertion in Map
//更新MapPoints与KeyFrame的关联,UpdateConnections()
ProcessNewKeyFrame();
// Check recent MapPoints
//剔除地图中新添加的但质量不好的MapPoints
//IncreaseedFound/IncreaseVisible<25%
//观测到该点的关键帧太少
MapPointCulling();
// Triangulate new MapPoints
//运动过程中和共示程度比较高的关键帧通过三角化恢复出一些MapPoints
CreateNewMapPoints();
// Find more matches in neighbor keyframes and fuse point duplications
//检查当前关键帧与相邻帧(两级相邻)重复的MapPoints
SearchInNeighbors();
mbAbortBA = false;
//
if(!CheckNewKeyFrames() && !stopRequested())
{
// Local BA
//和当前关键帧相连的关键帧及MapPoints做局部BA优化
Optimizer::LocalBundleAdjustment(mpCurrentKeyFrame,&mbAbortBA);
// Check redundant local Keyframes
//其90%以上的MapPoints能被其他共视关键帧(至少三个)观测到的关键帧
KeyFrameCulling();
mpMap->SetFlagAfterBA();
// Tracking will see Local Mapping idle
if(!CheckNewKeyFrames())
SetAcceptKeyFrames(true);
}
mpLoopCloser->InsertKeyFrame(mpCurrentKeyFrame);
}
// Safe area to stop
if(stopRequested())
/*
bool LocalMapping::stopRequested()
{
boost::mutex::scoped_lock lock(mMutexStop);
return mbStopRequested;//暂停请求
}
/
{
Stop();//localmapping设置为停止
/
void LocalMapping::Stop()
{
boost::mutex::scoped_lock lock(mMutexStop);
mbStopped = true;
}
/
ros::Rate r2(1000);
while(isStopped() && ros::ok())
{
r2.sleep();
}
/
bool LocalMapping::isStopped()
{
boost::mutex::scoped_lock lock(mMutexStop);
return mbStopped;
}
*/
SetAcceptKeyFrames(true);//可以接受新的关键帧
}
ResetIfRequested();//重置相关变量,供下次使用
r.sleep();//沉睡1/500秒,供删除数据使用,我是这么理解的
}
}
void LocalMapping::InsertKeyFrame(KeyFrame *pKF)//插入关键帧
{
boost::mutex::scoped_lock lock(mMutexNewKFs);
mlNewKeyFrames.push_back(pKF);
mbAbortBA=true;//BA标志
SetAcceptKeyFrames(false);
}
//检查队列等待处理的关键帧列表是否不为空
bool LocalMapping::CheckNewKeyFrames()
{
boost::mutex::scoped_lock lock(mMutexNewKFs);
return(!mlNewKeyFrames.empty());
}
//处理新的关键帧
void LocalMapping::ProcessNewKeyFrame()
{
//从队列中取得新的关键帧,并在队列中将此关键帧清除
{
boost::mutex::scoped_lock lock(mMutexNewKFs);
mpCurrentKeyFrame = mlNewKeyFrames.front();
mlNewKeyFrames.pop_front();
}
// Compute Bags of Words structures
//计算该关键帧特征点的BOW向量
mpCurrentKeyFrame->ComputeBoW();
if(mpCurrentKeyFrame->mnId==0)//关键帧ID
return;
// Associate MapPoints to the new keyframe and update normal and descriptor
//跟踪局部地图过程中新匹配上的MapPoints和当前关键帧绑定
//在TrackLocalMap函数中将局部地图中的MapPoints与当前帧进行了匹配,但没有与当前帧进行关联
vector vpMapPointMatches = mpCurrentKeyFrame->GetMapPointMatches();
if(mpCurrentKeyFrame->mnId>1) //This operations are already done in the tracking for the first two keyframes
{
for(size_t i=0; iisBad())
{
// 添加观测
pMP->AddObservation(mpCurrentKeyFrame, i);
// 获得该点的平均观测方向和观测距离范围
pMP->UpdateNormalAndDepth();
// 加入关键帧后,更新3d点的最佳描述子
pMP->ComputeDistinctiveDescriptors();
}
}
}
}
//处理第一帧,这与ORB_SLAM2不一样
if(mpCurrentKeyFrame->mnId==1)
{
for(size_t i=0; i
MapPoint* pMP = vpMapPointMatches[i];
if(pMP)
{
mlpRecentAddedMapPoints.push_back(pMP);
}
}
}
// Update links in the Covisibility Graph
// 更新关键帧间的连接关系,Covisibility图和Essential图
mpCurrentKeyFrame->UpdateConnections();
// Insert Keyframe in Map
// 将该关键帧插入到地图中
mpMap->AddKeyFrame(mpCurrentKeyFrame);
// 剔除ProcessNewKeyFrame和CreateNewMapPoints函数中引入的质量不好的MapPoints
//注意删除标准,见上,此部分比较简单,就是要利用三个条件判断是否剔除mappoints,设置badflag
void LocalMapping::MapPointCulling()
{
// Check Recent Added MapPoints
list
const unsigned long int nCurrentKFid = mpCurrentKeyFrame->mnId;
while(lit!=mlpRecentAddedMapPoints.end())//遍历所有mappoint
{
MapPoint* pMP = lit;
if(pMP->isBad())
{
// 已经是坏点的MapPoints直接从链表中删除
lit = mlpRecentAddedMapPoints.erase(lit);
}
else if(pMP->GetFoundRatio()<0.25f )
{
/ 跟踪到该MapPoint的Frame数相比预计可观测到该MapPoint的Frame数的比例小于25%
pMP->SetBadFlag();
lit = mlpRecentAddedMapPoints.erase(lit);
}
else if((nCurrentKFid-pMP->mnFirstKFid)>=2 && pMP->Observations()<=2)
{
// 从该点建立开始,到现在已经过了不少于2个关键帧
// 但是观测到该点的关键帧数却不超过2帧,则该点不合格
pMP->SetBadFlag();
lit = mlpRecentAddedMapPoints.erase(lit);
}
else if((nCurrentKFid-pMP->mnFirstKFid)>=3)
// 从建立该点开始,已经过了3个关键帧而没有被剔除,则认为是质量高的点
// 因此没有SetBadFlag(),仅从队列中删除,放弃对该点的检测
lit = mlpRecentAddedMapPoints.erase(lit);
else
lit++;
}
}
//产生新的地图点,与tracking线程里不一样,那里直接利用深度信息产生地图点,这里是根据当前帧的邻居帧,进行再次匹配,利用三角化生成地图点,这就增加了slam的可能距离。
//void LocalMapping::CreateNewMapPoints/根据当前关键帧恢复出一些新的地图点,不包括和当前关键帧匹配的局部地图点//(已经在ProcessNewKeyFrame中处理)()
/注意理解与前面两步的先后关系,先处理新关键帧与局部地图点之间的关系,然后对局部地图点进行检查
//最后再通过新关键帧恢复新的地图点
void LocalMapping::CreateNewMapPoints()
{
// Take neighbor keyframes in covisibility graph
// 在当前关键帧的共视关键帧中找到共视程度最高的20帧相邻帧
vector
ORBmatcher matcher(0.6,false);//orbmatcher介绍
cv::Mat Rcw1 = mpCurrentKeyFrame->GetRotation();
cv::Mat Rwc1 = Rcw1.t();
cv::Mat tcw1 = mpCurrentKeyFrame->GetTranslation();
cv::Mat Tcw1(3,4,CV_32F);
Rcw1.copyTo(Tcw1.colRange(0,3));
tcw1.copyTo(Tcw1.col(3));
cv::Mat Ow1 = mpCurrentKeyFrame->GetCameraCenter();
//内参
const float fx1 = mpCurrentKeyFrame->fx;
const float fy1 = mpCurrentKeyFrame->fy;
const float cx1 = mpCurrentKeyFrame->cx;
const float cy1 = mpCurrentKeyFrame->cy;
const float invfx1 = 1.0f/fx1;
const float invfy1 = 1.0f/fy1;
const float ratioFactor = 1.5f*mpCurrentKeyFrame->GetScaleFactor();//1.5*第一层的尺度因子。描述或许不准确
// Search matches with epipolar restriction and triangulate
//遍历所有的相邻关键帧
for(size_t i=0; iGetCameraCenter();
cv::Mat vBaseline = Ow2-Ow1;
const float baseline = cv::norm(vBaseline);
// 邻接关键帧的场景深度中值
const float medianDepthKF2 = pKF2->ComputeSceneMedianDepth(2);
// baseline与景深的比例
const float ratioBaselineDepth = baseline/medianDepthKF2;
if(ratioBaselineDepth<0.01)
continue;
// Compute Fundamental Matrix
// 根据两个关键帧的位姿计算它们之间的基本矩阵
cv::Mat F12 = ComputeF12(mpCurrentKeyFrame,pKF2);
// Search matches that fulfil epipolar constraint
// 通过极线约束限制匹配时的搜索范围,进行特征点匹配
vector vMatchedKeysUn1;
vector vMatchedKeysUn2;
vector > vMatchedIndices;
matcher.SearchForTriangulation(mpCurrentKeyFrame,pKF2,F12,vMatchedKeysUn1,vMatchedKeysUn2,vMatchedIndices);
cv::Mat Rcw2 = pKF2->GetRotation();
cv::Mat Rwc2 = Rcw2.t();
cv::Mat tcw2 = pKF2->GetTranslation();
cv::Mat Tcw2(3,4,CV_32F);
Rcw2.copyTo(Tcw2.colRange(0,3));
tcw2.copyTo(Tcw2.col(3));
const float fx2 = pKF2->fx;
const float fy2 = pKF2->fy;
const float cx2 = pKF2->cx;
const float cy2 = pKF2->cy;
const float invfx2 = 1.0f/fx2;
const float invfy2 = 1.0f/fy2;
// Triangulate each match
// 对每对匹配通过三角化生成3D点
for(size_t ikp=0, iendkp=vMatchedKeysUn1.size(); ikp(3,1) << (kp1.pt.x-cx1)*invfx1, (kp1.pt.y-cy1)*invfy1, 1.0 );
// 由相机坐标系转到世界坐标系,得到视差角
cv::Mat ray1 = Rwc1*xn1;
cv::Mat xn2 = (cv::Mat_(3,1) << (kp2.pt.x-cx2)*invfx2, (kp2.pt.y-cy2)*invfy2, 1.0 );
cv::Mat ray2 = Rwc2*xn2;
const float cosParallaxRays = ray1.dot(ray2)/(cv::norm(ray1)*cv::norm(ray2));
//视差角不合适
if(cosParallaxRays<0 || cosParallaxRays>0.9998)
continue;
// Linear Triangulation Method
cv::Mat A(4,4,CV_32F);
A.row(0) = xn1.at(0)*Tcw1.row(2)-Tcw1.row(0);
A.row(1) = xn1.at(1)*Tcw1.row(2)-Tcw1.row(1);
A.row(2) = xn2.at(0)*Tcw2.row(2)-Tcw2.row(0);
A.row(3) = xn2.at(1)*Tcw2.row(2)-Tcw2.row(1);
cv::Mat w,u,vt;
cv::SVD::compute(A,w,u,vt,cv::SVD::MODIFY_A| cv::SVD::FULL_UV);
cv::Mat x3D = vt.row(3).t();
if(x3D.at(3)==0)
continue;
// Euclidean coordinates
x3D = x3D.rowRange(0,3)/x3D.at(3);
cv::Mat x3Dt = x3D.t();
//Check triangulation in front of cameras
// 检测深度正负
float z1 = Rcw1.row(2).dot(x3Dt)+tcw1.at(2);
if(z1<=0)
continue;
float z2 = Rcw2.row(2).dot(x3Dt)+tcw2.at(2);
if(z2<=0)
continue;
//Check reprojection error in first keyframe
// 计算3D点在当前关键帧下的重投影误差
float sigmaSquare1 = mpCurrentKeyFrame->GetSigma2(kp1.octave);
float x1 = Rcw1.row(0).dot(x3Dt)+tcw1.at(0);
float y1 = Rcw1.row(1).dot(x3Dt)+tcw1.at(1);
float invz1 = 1.0/z1;
float u1 = fx1*x1*invz1+cx1;
float v1 = fy1*y1*invz1+cy1;
float errX1 = u1 - kp1.pt.x;
float errY1 = v1 - kp1.pt.y;
if((errX1*errX1+errY1*errY1)>5.991*sigmaSquare1)
continue;
//Check reprojection error in second keyframe
// 计算3D点在另一个关键帧下的重投影误差
float sigmaSquare2 = pKF2->GetSigma2(kp2.octave);
float x2 = Rcw2.row(0).dot(x3Dt)+tcw2.at(0);
float y2 = Rcw2.row(1).dot(x3Dt)+tcw2.at(1);
float invz2 = 1.0/z2;
float u2 = fx2*x2*invz2+cx2;
float v2 = fy2*y2*invz2+cy2;
float errX2 = u2 - kp2.pt.x;
float errY2 = v2 - kp2.pt.y;
if((errX2*errX2+errY2*errY2)>5.991*sigmaSquare2)
continue;
//Check scale consistency
// 检查尺度连续性
cv::Mat normal1 = x3D-Ow1;
float dist1 = cv::norm(normal1);
cv::Mat normal2 = x3D-Ow2;
float dist2 = cv::norm(normal2);
if(dist1==0 || dist2==0)
continue;
float ratioDist = dist1/dist2;
float ratioOctave = mpCurrentKeyFrame->GetScaleFactor(kp1.octave)/pKF2->GetScaleFactor(kp2.octave);
if(ratioDist*ratioFactorratioOctave*ratioFactor)
continue;
ratioDistratioFactor < ratioOctave 或 ratioDist/ratioOctave > ratioFactor表明尺度变化是连续的
// Triangulation is succesfull
// 三角化生成3D点成功,构造成MapPoint
MapPoint pMP = new MapPoint(x3D,mpCurrentKeyFrame,mpMap);
// 为该MapPoint添加属性
pMP->AddObservation(pKF2,idx2);
pMP->AddObservation(mpCurrentKeyFrame,idx1);
mpCurrentKeyFrame->AddMapPoint(pMP,idx1);
pKF2->AddMapPoint(pMP,idx2);
pMP->ComputeDistinctiveDescriptors();
pMP->UpdateNormalAndDepth();
mpMap->AddMapPoint(pMP);
// 将新产生的点放入检测队列
mlpRecentAddedMapPoints.push_back(pMP);
}
}
}
// 检查并融合当前关键帧与相邻帧(两级相邻)重复的MapPoints
void LocalMapping::SearchInNeighbors()
{
// Retrieve neighbor keyframes
// 获得当前关键帧在covisibility图中权重排名前nn的邻接关键帧
// 找到当前帧一级相邻与二级相邻关键帧
vector
vector
for(vector
{
KeyFrame* pKFi = *vit;
if(pKFi->isBad() || pKFi->mnFuseTargetForKF == mpCurrentKeyFrame->mnId)
continue;
vpTargetKFs.push_back(pKFi);// 一级相邻帧
pKFi->mnFuseTargetForKF = mpCurrentKeyFrame->mnId;
// Extend to some second neighbors
vector vpSecondNeighKFs = pKFi->GetBestCovisibilityKeyFrames(5);
for(vector::iterator vit2=vpSecondNeighKFs.begin(), vend2=vpSecondNeighKFs.end(); vit2!=vend2; vit2++)
{
KeyFrame* pKFi2 = *vit2;
if(pKFi2->isBad() || pKFi2->mnFuseTargetForKF==mpCurrentKeyFrame->mnId || pKFi2->mnId==mpCurrentKeyFrame->mnId)
continue;
vpTargetKFs.push_back(pKFi2);// 存入二级相邻帧
}
}
// Search matches by projection from current KF in target KFs
ORBmatcher matcher(0.6);
// 将当前帧的MapPoints分别与一级二级相邻帧进行融合
vector vpMapPointMatches = mpCurrentKeyFrame->GetMapPointMatches();
for(vector::iterator vit=vpTargetKFs.begin(), vend=vpTargetKFs.end(); vit!=vend; vit++)
{
KeyFrame* pKFi = *vit;
matcher.Fuse(pKFi,vpMapPointMatches);
}
// Search matches by projection from target KFs in current KF
// 用于存储一级邻接和二级邻接关键帧所有MapPoints的集合
vector vpFuseCandidates;
vpFuseCandidates.reserve(vpTargetKFs.size()*vpMapPointMatches.size());
// 将一级二级相邻帧的MapPoints分别与当前帧(的MapPoints)进行融合
// 遍历每一个一级邻接和二级邻接关键帧
for(vector
{
KeyFrame* pKFi = vitKF;
vector
for(vector
{
MapPoint* pMP = *vitMP;
if(!pMP)
continue;
// 判断MapPoints是否为坏点,或者是否已经加进集合vpFuseCandidates
if(pMP->isBad() || pMP->mnFuseCandidateForKF == mpCurrentKeyFrame->mnId)
continue;
// 加入集合,并标记已经加入
pMP->mnFuseCandidateForKF = mpCurrentKeyFrame->mnId;
vpFuseCandidates.push_back(pMP);
}
}
matcher.Fuse(mpCurrentKeyFrame,vpFuseCandidates);
// Update points
// 更新当前帧MapPoints的描述子,深度,观测主方向等属性
vpMapPointMatches = mpCurrentKeyFrame->GetMapPointMatches();
for(size_t i=0, iend=vpMapPointMatches.size(); iisBad())
{
// 在所有找到pMP的关键帧中,获得最佳的描述子
pMP->ComputeDistinctiveDescriptors();
pMP->UpdateNormalAndDepth();
}
}
}
// Update connections in covisibility graph
// 步更新当前帧的MapPoints后更新与其它帧的连接关系
// 更新covisibility图
mpCurrentKeyFrame->UpdateConnections();
}
cv::Mat LocalMapping::ComputeF12(KeyFrame *&pKF1, KeyFrame *&pKF2)
{
cv::Mat R1w = pKF1->GetRotation();
cv::Mat t1w = pKF1->GetTranslation();
cv::Mat R2w = pKF2->GetRotation();
cv::Mat t2w = pKF2->GetTranslation();
cv::Mat R12 = R1w*R2w.t();
cv::Mat t12 = -R1w*R2w.t()*t2w+t1w;
cv::Mat t12x = SkewSymmetricMatrix(t12);
cv::Mat K1 = pKF1->GetCalibrationMatrix();
cv::Mat K2 = pKF2->GetCalibrationMatrix();
return K1.t().inv()*t12x*R12*K2.inv();
}
void LocalMapping::RequestStop()
{
boost::mutex::scoped_lock lock(mMutexStop);
mbStopRequested = true;
boost::mutex::scoped_lock lock2(mMutexNewKFs);
mbAbortBA = true;
}
void LocalMapping::Stop()
{
boost::mutex::scoped_lock lock(mMutexStop);
mbStopped = true;
}
bool LocalMapping::isStopped()
{
boost::mutex::scoped_lock lock(mMutexStop);
return mbStopped;
}
bool LocalMapping::stopRequested()
{
boost::mutex::scoped_lock lock(mMutexStop);
return mbStopRequested;
}
void LocalMapping::Release()
{
boost::mutex::scoped_lock lock(mMutexStop);
mbStopped = false;
mbStopRequested = false;
for(list
delete *lit;
mlNewKeyFrames.clear();
}
bool LocalMapping::AcceptKeyFrames()
{
boost::mutex::scoped_lock lock(mMutexAccept);
return mbAcceptKeyFrames;
}
void LocalMapping::SetAcceptKeyFrames(bool flag)
{
boost::mutex::scoped_lock lock(mMutexAccept);
mbAcceptKeyFrames=flag;
}
void LocalMapping::InterruptBA()
{
mbAbortBA = true;
}
// 关键帧剔除
void LocalMapping::KeyFrameCulling()
{
// Check redundant keyframes (only local keyframes)
// A keyframe is considered redundant if the 90% of the MapPoints it sees, are seen
// in at least other 3 keyframes (in the same or finer scale)
// 提取当前帧的共视关键帧
vector
for(vector::iterator vit=vpLocalKeyFrames.begin(), vend=vpLocalKeyFrames.end(); vit!=vend; vit++)
{
KeyFrame* pKF = *vit;
if(pKF->mnId==0)
continue;
// 提取每个共视关键帧的MapPoints
vector vpMapPoints = pKF->GetMapPointMatches();
int nRedundantObservations=0;
int nMPs=0;
// 遍历该局部关键帧的MapPoints,判断是否90%以上的MapPoints能被其它关键帧(至少3个)观测到
for(size_t i=0, iend=vpMapPoints.size(); iisBad())
{
nMPs++;
if(pMP->Observations()>3)
{
int scaleLevel = pKF->GetKeyPointUn(i).octave;
map observations = pMP->GetObservations();
// 判断该MapPoint是否同时被三个关键帧观测到
int nObs=0;
for(map::iterator mit=observations.begin(), mend=observations.end(); mit!=mend; mit++)
{
KeyFrame* pKFi = mit->first;
if(pKFi==pKF)
continue;
int scaleLeveli = pKFi->GetKeyPointUn(mit->second).octave;
// 要求MapPoint在该局部关键帧的特征尺度大于(或近似于)其它关键帧的特征尺度
if(scaleLeveli<=scaleLevel+1)
{
nObs++;
// 已经找到三个同尺度的关键帧可以观测到该MapPoint,不用继续找了
if(nObs>=3)
break;
}
}
// 该MapPoint至少被三个关键帧观测到
if(nObs>=3)
{
nRedundantObservations++;
}
}
}
}
}
// 该局部关键帧90%以上的MapPoints能被其它至少三个关键帧观测到,则认为是冗余关键帧
if(nRedundantObservations>0.9*nMPs)
pKF->SetBadFlag();
}
}
cv::Mat LocalMapping::SkewSymmetricMatrix(const cv::Mat &v)
{
return (cv::Mat_(3,3) << 0, -v.at(2), v.at(1),
v.at(2), 0,-v.at(0),
-v.at(1), v.at(0), 0);
}
void LocalMapping::RequestReset()
{
{
boost::mutex::scoped_lock lock(mMutexReset);
mbResetRequested = true;
}
ros::Rate r(500);
while(ros::ok())
{
{
boost::mutex::scoped_lock lock2(mMutexReset);
if(!mbResetRequested)
break;
}
r.sleep();
}
}
void LocalMapping::ResetIfRequested()
{
boost::mutex::scoped_lock lock(mMutexReset);
if(mbResetRequested)
{
mlNewKeyFrames.clear();
mlpRecentAddedMapPoints.clear();
mbResetRequested=false;
}
}
} //namespace ORB_SLAM