- 记录学习的第七天
xiufeia
学习
还是老规矩,力扣的每日一题这道题我的思路是有了,不过在实现思路的时候遇到很多问题我首先也是想到了用一个哈希表之类的把出现次数最多的元素依次记录下来,然后再进行分配,不过由于我的STL不太熟练,所以我用的方法存在问题我的思路与题解的思路存在最大的差异就是,题解是根据每一行来存的,而我想的是每一列进行存元素。接着写了两道滑动窗口的题。滑动窗口需要注意的就是外循环扩展右指引,内循环扩展左指引,然后进行出
- 软件设计师之树与二叉树:非线性数据结构的深度探索
一杯年华@编程空间
软考中级数据结构
软件设计师之树与二叉树:非线性数据结构的深度探索在软件开发领域,数据结构是程序设计的核心基础,其中树和二叉树作为重要的非线性数据结构,在众多场景中都有着广泛应用。我写这篇博客,就是希望和大家一起学习进步,深入解析树和二叉树的相关知识,用通俗易懂的语言结合图表和Java代码示例进行讲解,帮助大家更好地掌握这些内容。一、树的定义与基本概念树的定义树是由n(n≥0)个结点组成的有限集合。当n=0时,为空
- 人工智能(AI)系统化学习路线
xiaoyu❅
python人工智能学习
一、为什么需要系统化学习AI?人工智能技术正在重塑各行各业,但许多初学者容易陷入误区:❌盲目跟风:直接学习TensorFlow/PyTorch,忽视数学与算法基础。❌纸上谈兵:只看理论不写代码,无法解决实际问题。❌方向模糊:对CV/NLP/RL等细分领域缺乏认知,难以针对性提升。正确的学习姿势:“金字塔式”分层学习(理论→算法→框架→应用→工程化),逐步构建完整的AI知识体系。二、人工智能学习路线
- AI 时代,学习 Java 应如何入手?
琢磨先生David
人工智能java
一、Java的现状:生态繁荣与AI融合的双重机遇在2025年的技术版图中,Java依然稳坐企业级开发的“头把交椅”。根据行业统计,Java在全球企业级应用中的市场份额仍超过65%,尤其在微服务架构、大数据平台和物联网(IoT)领域占据核心地位。随着云原生技术的普及,Java生态正经历新一轮进化:轻量化框架通过无服务器架构优化,启动速度提升300%,内存占用降低50%,使得Java在容器化部署中更具
- 深度学习-130-RAG技术之基于Anything LLM搭建本地私人知识库的应用策略问题总结(一)
皮皮冰燃
深度学习深度学习人工智能RAG
文章目录1AnythingLLM的本地知识库1.1本地知识库应用场景1.2效果对比及思考1.3本地体现在哪些方面1.3.1知识在本地1.3.2分割后的文档在本地1.3.3大模型部署运行在本地2问错问题带来的问题2.1常见的问题2.2原因分析3为什么LLM不使用我的文件?3.1LLM不是万能的【omnipotent】3.2LLM不会自省【introspect】3.3AnythingLLM是如何工作的
- 设备树学习(二十三、番外篇-中断子系统之softirq)
奔跑的小刺猬
设备树设备树原理和实现
既然开始学了,那么还是一次把中断的所有知识都系统的学一下。刚好有蜗窝大神的博客做指引。http://www.wowotech.net/irq_subsystem/soft-irq.html一、前言对于中断处理而言,linux将其分成了两个部分,一个叫做中断handler(tophalf),是全程关闭中断的,另外一部分是deferabletask(bottomhalf),属于不那么紧急需要处理的事情
- 3DMAX点云算法:实现毫米级BIM模型偏差检测(附完整代码)
夏末之花
人工智能
摘要本文基于激光雷达点云数据与BIM模型的高精度对齐技术,提出一种融合动态体素化与多模态特征匹配的偏差检测方法。通过点云预处理、语义分割、模型配准及差异分析,最终实现建筑构件毫米级偏差的可视化检测。文中提供关键代码实现,涵盖点云处理、特征提取与深度学习模型搭建。一、核心算法流程点云预处理与特征增强去噪与下采样:采用统计滤波与体素网格下采样,去除离群点并降低数据量。语义分割:基于PointNet++
- Java数据类型 Arrays VS ArraysList VS LikedList 解析
fantasy_4
Javajava
在学习Java过程中,在刷题时总是搞不清楚这三种数据结构的区别,打算写篇文章记录一下ArraysVSArrayListArrayListVSLinkedList总结ArraysVSArrayListArraysArrayList类型Java的基本数据类型Java集合框架中的一个类,实现了List接口存储内容基本数据类型+对象引用对象引用可变性数组长度创建后不可变长度可变适用场景查询元素会比较快,直
- 密码安全:如何识别强弱密码,并打造铁壁防线!
喵手
零基础学Java安全php开发语言
全文目录:开篇语前言:一场关于密码的角力赛目录密码的弱点:为什么弱密码是个大问题如何定义强密码?强密码的特点:举个例子:如何识别密码强弱?简单技巧帮你判断1.**密码长度:是否足够长?**示例代码演示代码解释:测试结果示例:2.**复杂度:是否包含特殊字符?**示例代码演示代码解释:测试结果示例:小结:3.**模式识别:是否包含常见模式?**️密码管理小技巧:打造更安全的数字生活1.**使用密码管
- 数据增强:扩充数据集提升模型泛化能力
AI天才研究院
计算AI大模型企业级应用开发实战ChatGPT计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
1.背景介绍1.1.数据增强的重要性在机器学习领域,模型的泛化能力至关重要。一个泛化能力强的模型能够在未见数据上表现良好,而过拟合的模型则会在训练数据上表现出色,但在新数据上表现糟糕。数据增强是一种有效提升模型泛化能力的技术,它通过对现有数据进行各种变换,人为地扩充数据集,从而增加训练数据的数量和多样性。1.2.数据增强的应用场景数据增强广泛应用于各种机器学习任务中,包括:图像识别:对图像进行旋转
- 数据增强:扩充数据集,提升模型的鲁棒性
AI天才研究院
DeepSeekR1&大数据AI人工智能大模型LLM大模型落地实战指南计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
数据增强:扩充数据集,提升模型的鲁棒性1.背景介绍1.1数据集的重要性在机器学习和深度学习领域中,数据集是训练模型的基础。高质量的数据集对于构建准确、鲁棒的模型至关重要。然而,在现实世界中,获取大量高质量的数据通常是一个巨大的挑战。数据采集过程耗时耗力,而且成本高昂。此外,某些领域的数据存在隐私和安全问题,难以获取。1.2数据集不足的挑战当数据集规模有限时,模型很容易过拟合,无法很好地推广到新的、
- NLP高频面试题(三)——普通RNN的梯度消失和梯度爆炸问题
Chaos_Wang_
NLP常见面试题自然语言处理rnn人工智能
普通RNN(循环神经网络)的梯度消失和梯度爆炸问题是指在训练深层或长序列的RNN模型时出现的两种典型问题:一、梯度消失(VanishingGradient)梯度消失是指在反向传播过程中,梯度逐层传播时变得越来越小,最终趋于接近0,导致模型前层的参数难以更新。原因:在反向传播时,每一层的梯度是通过链式法则计算得到的。因为链式求导中不断乘以一个较小的数值(小于1),随着层数或时间步的增加,梯度将指数级
- 嵌入式C语言学习笔记(2)
愿抬头有阳光
c语言学习笔记
1.数组指针数组指针本质上就是一个指针,它里面存放的是数组的首地址。#includevoidshow(int(*p)[4],intn){for(inti=0;i4*4=16;3.命令行传递参数,main函数的标准格式intmain(intargc,constchar*argv[]){return0;}//argc:参数的个数包括./a.out//argv:参数的值列表argv[0]="./a.ou
- 【算法学习之路】12.DFS
零零时
算法学习之路深度优先算法学习c++开发语言数据结构全排列
DFS前言一.DFS简介二.思路三.缺点四.三种类型五.题目1.2前言我会将一些常用的算法以及对应的题单给写完,形成一套完整的算法体系,以及大量的各个难度的题目,目前算法也写了几篇,题单正在更新,其他的也会陆陆续续的更新,希望大家点赞收藏我会尽快更新的!!!一.DFS简介1.深度优先搜索,是一种用于遍历或搜索树或图的算法。所谓深度优先,就是说每次搜尝试向更深的节点走。2.在搜索算法中,该DFS常常
- C++学习笔记:引用
etp_
c++学习笔记
引用是已知变量的别名,通过将引用变量用作参数,函数将使用原始数据而不是其副本。下面将r作为a的别名:inta;int&r=a;就像char*是指向char的指针一样,int&是指向int的引用。(a和r指向相同的值和内存单元)注意:&r表示r引用变量的地址。引用和指针的区别1.必须在声明引用时将其初始化,而不能像指针那样先声明再赋值。2.引用更接近const指针,一旦与某个变量关联起来便有一直效忠
- 关于使用python进行处理雷达数据笔记
六毛驴
python数据分析
好久不见,甚是想念本人深知这段时间鸽了一篇博(上一篇博),后续会补上的,今天想写一下关于使用python进行TI雷达接收回波数据处理的一些常见问题和解决方法。这也是前几天领导给我布置的任务,所以我将这段时间自己遇到的并且已经解决的问题进行了简单的汇总,也会推荐几本这几天阅读了python书籍。python书籍推荐:python学习手册MarkLutz著(对应python版本3.X,2.X都可)Py
- Tsfresh + TA-Lib + LightGBM :A 股市场量化投资策略实战入门
船长@Quant
Python金融科技pythontsfreshTA-LibLightGBM量化技术策略开发
Tsfresh+TA-Lib+LightGBM:A股市场量化投资策略实战入门本项目以A股市场为研究对象,通过量化技术对市场数据进行分析,构建量化投资策略,并利用历史数据回测验证策略的有效性。项目旨在为量化技术初学者提供一个系统的学习框架,帮助读者掌握从数据获取到策略评估的全流程操作。文中内容仅限技术学习与代码实践参考,市场存在不确定性,技术分析需谨慎验证,不构成任何投资建议。适合量化新手建立系统认
- Docker打包深度学习项目
FLY_LTL
docker深度学习容器
文章目录Docker打包深度学习项目1.Docker和NVIDIAContainerToolkit的安装1.Docker2.NVIDIAContainerToolkit3.添加国内镜像源2.使用Dockerfile打包并保存镜像1.Dockerfile2.通过Dockerfile生成镜像3.保存镜像和加载4.运行Docker并测试参考Docker打包深度学习项目本文来源于个人实践总结,供各位同学参
- Flink读取kafka数据并写入HDFS
王知无(import_bigdata)
Flink系统性学习专栏hdfskafkaflink
硬刚大数据系列文章链接:2021年从零到大数据专家的学习指南(全面升级版)2021年从零到大数据专家面试篇之Hadoop/HDFS/Yarn篇2021年从零到大数据专家面试篇之SparkSQL篇2021年从零到大数据专家面试篇之消息队列篇2021年从零到大数据专家面试篇之Spark篇2021年从零到大数据专家面试篇之Hbase篇
- 使用TensorFlow、OpenCV和Pygame实现图像处理与游戏开发
UwoiGit
tensorflowopencvpygame
在本篇文章中,我们将介绍如何结合使用TensorFlow、OpenCV和Pygame来进行图像处理和游戏开发。这三个工具在机器学习、计算机视觉和游戏开发领域都非常流行,并且它们的结合可以提供强大的功能和无限的创造力。我们将逐步介绍如何安装和配置这些工具,并提供相关的源代码示例。安装TensorFlowTensorFlow是一个基于数据流图的开源机器学习框架,提供了丰富的工具和库来构建和训练各种深度
- DeepSeek + 药物研发:解决药物研发周期长、成本高-降低80%、失败率高-减少40%
Debroon
医疗大模型研发+慢病逆转人工智能深度学习
DeepSeek+药物研发:解决药物研发周期长、成本高-降低80%、失败率高-减少40%论文大纲1.WHY——研究背景与现实问题1.1研究要解决的现实问题与提出背景1.2研究所要解决的问题类别1.3正反例对比关联:和前人的工作有什么关系?3.总结归纳3.1总结收获3.2探索思考4.WHAT——核心发现或论点5.HOW——研究过程、创新与关键数据6.HOWGOOD——理论贡献与实践意义解法拆解1.1
- 【Kafka】Kafka写入数据
此木|西贝
Kafkakafka分布式
不管是把Kafka作为消息队列还是数据存储平台,总是需要一个可以往Kafka写入数据的生产者,一个可以从Kafka读取数据的消费者。生产者创建一个ProducerRecord对象,包含目标topic和发送的内容;另外可以指定键、分区、时间戳或标头对数据进行分区;如果没有显示指定分区,数据将会传给分区器,确定往哪个主题和分区发送数据。消息添加到一个消息批次,该批次所有的消息被发送到同一个主题和分区;
- 机器学习之KMeans算法
知舟不叙
机器学习算法kmeans
文章目录引言1.KMeans算法简介2.KMeans算法的数学原理3.KMeans算法的步骤3.1初始化簇中心3.2分配数据点3.3更新簇中心3.4停止条件4.KMeans算法的优缺点4.1优点4.2缺点5.KMeans算法的应用场景5.1图像分割5.2市场细分5.3文档聚类5.4异常检测6.Python实现KMeans算法7.总结引言KMeans算法是机器学习中最经典的无监督学习算法之一,广泛应
- 机器学习流程—数据预处理 清洗
不二人生
机器学习机器学习人工智能数据预处理
文章目录机器学习流程—数据预处理清洗定义问题数据预处理数据加载与展示重复数据处理数据类型空值处理无关特征删除数据分布删除异常值生成标签和特征数据分割机器学习流程—数据预处理清洗数据处理是将数据从给定形式转换为更可用和更理想的形式的任务,即使其更有意义、信息更丰富。使用机器学习算法、数学建模和统计知识,整个过程可以自动化。这个完整过程的输出可以是任何所需的形式,如图形、视频、图表、表格、图像等等,具
- 仓颉:关于封装,继承,多态
繁星幽蓝悼梦影
仓颉华为harmonyos
在对于仓颉有了初步了解之后,我们自然会想在我们之前所学习,编写的简单代码上添加一些其他的功能,今天我们就来讲几个重要的小功能封装为了提高数据访问的安全性,我们可以使用访问修饰符private。那么我们应该通过什么方法提高呢,我们有两种方法:1.通过方法2.通过属性设计器。参考如下代码packagecjchapter4.chapter1publicclassUser{privatevara1:Int
- 超小巧且经济的CMOS工业相机——Vieworks的VZ系列
51camera
工业相机
今天我们来看一款超级紧凑小巧且具有成本效益的工业相机——Vieworks的VZ系列。它主要有以下四大特点:1、超紧凑的工业相机VZ系列是最小的相机,适用于广泛的机器视觉应用。由于其29mmx29mm的紧凑外壳尺寸和重量轻,VZ系列可以简单地取代大多数工业相机。2、无缝安装和高可用性PoE千兆以太网和USB3.0接口使得系统集成相对容易,减少了电缆长度和多个摄像头设置。VZ系列通过使用千兆以太网和U
- 工业镜头选型技巧——考虑应用特点(内附实例)
51camera
机器视觉工业镜头
在进行工业镜头选型时,当与客户讨论镜头的某些参数时,客户会希望每个参数均为最理想的状态。但在实际应用中,很难满足理想要求,此时需要充分考虑项目的应用特点,对镜头的参数做一些适当且合理的取舍。为了便于理解,下面将通过两个选型案例来说明。以Moritex的工业镜头为例。1、检测精度与视野相机:9568*6380,3.76*3.76um视野:长边60mm要求:远心镜头镜头选型过程计算得知相机芯片尺寸是3
- 高输出红外光源的特点及应用
51camera
工业光源红外光源机器视觉
我们都知道光源在机器视觉系统中起着重要作用,能够影响成像效果,今天我们来看看红外光源。红外光是指波长比可见光中的红光长并且肉眼看不到的光。与可见光的红光相比,红外光的散射率较低,但透射率较高,因此,可用于透过印刷图案或液体的成像。红外LED的优点LED照射的红外光仅拥有特定波长范围的能量,与卤素光源相比,照射热极少。因此,对象物不易因热能而受损。红外光源成像实例(以ccs光源为例)1、1000nm
- 游戏成瘾与学习动力激发策略研究——了解“情感解离”“创伤理论”
*TQK*
知也思维认知心理学研究
一、情感解离(EmotionalDissociation)定义:情感解离是一种心理防御机制,指个体在经历无法承受的情绪压力或创伤时,通过切断情感体验与认知、记忆或现实感知的联系来保护自我。它不是简单的“麻木”,而是大脑为应对极端刺激而启动的“紧急逃生通道”。核心特征1、意识分裂现实解离:感到身体或环境“不真实”(如玩游戏时出现“灵魂出窍”般的视角抽离)情感隔离:能描述事件但无法体验对应情绪(如你通
- HarmonyOS TEXT 语音搜索场景学习和总结
harmonyos
在HarmonyOS中实现语音搜索功能时,涉及到麦克风权限的申请、音频数据的采集、编码和传输等多个步骤。以下是对上述代码的详细解析和补充说明:麦克风权限的申请与检查在HarmonyOS中,使用麦克风需要申请ohos.permission.MICROPHONE权限。在代码中,通过GRPermissionsUtils.checkPermissions方法来检查和申请权限。如果权限被授予,则可以继续进行
- 插入表主键冲突做更新
a-john
有以下场景:
用户下了一个订单,订单内的内容较多,且来自多表,首次下单的时候,内容可能会不全(部分内容不是必须,出现有些表根本就没有没有该订单的值)。在以后更改订单时,有些内容会更改,有些内容会新增。
问题:
如果在sql语句中执行update操作,在没有数据的表中会出错。如果在逻辑代码中先做查询,查询结果有做更新,没有做插入,这样会将代码复杂化。
解决:
mysql中提供了一个sql语
- Android xml资源文件中@、@android:type、@*、?、@+含义和区别
Cb123456
@+@?@*
一.@代表引用资源
1.引用自定义资源。格式:@[package:]type/name
android:text="@string/hello"
2.引用系统资源。格式:@android:type/name
android:textColor="@android:color/opaque_red"
- 数据结构的基本介绍
天子之骄
数据结构散列表树、图线性结构价格标签
数据结构的基本介绍
数据结构就是数据的组织形式,用一种提前设计好的框架去存取数据,以便更方便,高效的对数据进行增删查改。正确选择合适的数据结构,对软件程序的高效执行的影响作用不亚于算法的设计。此外,在计算机系统中数据结构的作用也是非同小可。例如常常在编程语言中听到的栈,堆等,就是经典的数据结构。
经典的数据结构大致如下:
一:线性数据结构
(1):列表
a
- 通过二维码开放平台的API快速生成二维码
一炮送你回车库
api
现在很多网站都有通过扫二维码用手机连接的功能,联图网(http://www.liantu.com/pingtai/)的二维码开放平台开放了一个生成二维码图片的Api,挺方便使用的。闲着无聊,写了个前台快速生成二维码的方法。
html代码如下:(二维码将生成在这div下)
? 1
&nbs
- ImageIO读取一张图片改变大小
3213213333332132
javaIOimageBufferedImage
package com.demo;
import java.awt.image.BufferedImage;
import java.io.File;
import java.io.IOException;
import javax.imageio.ImageIO;
/**
* @Description 读取一张图片改变大小
* @author FuJianyon
- myeclipse集成svn(一针见血)
7454103
eclipseSVNMyEclipse
&n
- 装箱与拆箱----autoboxing和unboxing
darkranger
J2SE
4.2 自动装箱和拆箱
基本数据(Primitive)类型的自动装箱(autoboxing)、拆箱(unboxing)是自J2SE 5.0开始提供的功能。虽然为您打包基本数据类型提供了方便,但提供方便的同时表示隐藏了细节,建议在能够区分基本数据类型与对象的差别时再使用。
4.2.1 autoboxing和unboxing
在Java中,所有要处理的东西几乎都是对象(Object)
- ajax传统的方式制作ajax
aijuans
Ajax
//这是前台的代码
<%@ page language="java" import="java.util.*" pageEncoding="UTF-8"%> <% String path = request.getContextPath(); String basePath = request.getScheme()+
- 只用jre的eclipse是怎么编译java源文件的?
avords
javaeclipsejdktomcat
eclipse只需要jre就可以运行开发java程序了,也能自动 编译java源代码,但是jre不是java的运行环境么,难道jre中也带有编译工具? 还是eclipse自己实现的?谁能给解释一下呢问题补充:假设系统中没有安装jdk or jre,只在eclipse的目录中有一个jre,那么eclipse会采用该jre,问题是eclipse照样可以编译java源文件,为什么呢?
&nb
- 前端模块化
bee1314
模块化
背景: 前端JavaScript模块化,其实已经不是什么新鲜事了。但是很多的项目还没有真正的使用起来,还处于刀耕火种的野蛮生长阶段。 JavaScript一直缺乏有效的包管理机制,造成了大量的全局变量,大量的方法冲突。我们多么渴望有天能像Java(import),Python (import),Ruby(require)那样写代码。在没有包管理机制的年代,我们是怎么避免所
- 处理百万级以上的数据处理
bijian1013
oraclesql数据库大数据查询
一.处理百万级以上的数据提高查询速度的方法: 1.应尽量避免在 where 子句中使用!=或<>操作符,否则将引擎放弃使用索引而进行全表扫描。
2.对查询进行优化,应尽量避免全表扫描,首先应考虑在 where 及 o
- mac 卸载 java 1.7 或更高版本
征客丶
javaOS
卸载 java 1.7 或更高
sudo rm -rf /Library/Internet\ Plug-Ins/JavaAppletPlugin.plugin
成功执行此命令后,还可以执行 java 与 javac 命令
sudo rm -rf /Library/PreferencePanes/JavaControlPanel.prefPane
成功执行此命令后,还可以执行 java
- 【Spark六十一】Spark Streaming结合Flume、Kafka进行日志分析
bit1129
Stream
第一步,Flume和Kakfa对接,Flume抓取日志,写到Kafka中
第二部,Spark Streaming读取Kafka中的数据,进行实时分析
本文首先使用Kakfa自带的消息处理(脚本)来获取消息,走通Flume和Kafka的对接 1. Flume配置
1. 下载Flume和Kafka集成的插件,下载地址:https://github.com/beyondj2ee/f
- Erlang vs TNSDL
bookjovi
erlang
TNSDL是Nokia内部用于开发电信交换软件的私有语言,是在SDL语言的基础上加以修改而成,TNSDL需翻译成C语言得以编译执行,TNSDL语言中实现了异步并行的特点,当然要完整实现异步并行还需要运行时动态库的支持,异步并行类似于Erlang的process(轻量级进程),TNSDL中则称之为hand,Erlang是基于vm(beam)开发,
- 非常希望有一个预防疲劳的java软件, 预防过劳死和眼睛疲劳,大家一起努力搞一个
ljy325
企业应用
非常希望有一个预防疲劳的java软件,我看新闻和网站,国防科技大学的科学家累死了,太疲劳,老是加班,不休息,经常吃药,吃药根本就没用,根本原因是疲劳过度。我以前做java,那会公司垃圾,老想赶快学习到东西跳槽离开,搞得超负荷,不明理。深圳做软件开发经常累死人,总有不明理的人,有个软件提醒限制很好,可以挽救很多人的生命。
相关新闻:
(1)IT行业成五大疾病重灾区:过劳死平均37.9岁
- 读《研磨设计模式》-代码笔记-原型模式
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
/**
* Effective Java 建议使用copy constructor or copy factory来代替clone()方法:
* 1.public Product copy(Product p){}
* 2.publi
- 配置管理---svn工具之权限配置
chenyu19891124
SVN
今天花了大半天的功夫,终于弄懂svn权限配置。下面是今天收获的战绩。
安装完svn后就是在svn中建立版本库,比如我本地的是版本库路径是C:\Repositories\pepos。pepos是我的版本库。在pepos的目录结构
pepos
component
webapps
在conf里面的auth里赋予的权限配置为
[groups]
- 浅谈程序员的数学修养
comsci
设计模式编程算法面试招聘
浅谈程序员的数学修养
- 批量执行 bulk collect与forall用法
daizj
oraclesqlbulk collectforall
BULK COLLECT 子句会批量检索结果,即一次性将结果集绑定到一个集合变量中,并从SQL引擎发送到PL/SQL引擎。通常可以在SELECT INTO、
FETCH INTO以及RETURNING INTO子句中使用BULK COLLECT。本文将逐一描述BULK COLLECT在这几种情形下的用法。
有关FORALL语句的用法请参考:批量SQL之 F
- Linux下使用rsync最快速删除海量文件的方法
dongwei_6688
OS
1、先安装rsync:yum install rsync
2、建立一个空的文件夹:mkdir /tmp/test
3、用rsync删除目标目录:rsync --delete-before -a -H -v --progress --stats /tmp/test/ log/这样我们要删除的log目录就会被清空了,删除的速度会非常快。rsync实际上用的是替换原理,处理数十万个文件也是秒删。
- Yii CModel中rules验证规格
dcj3sjt126com
rulesyiivalidate
Yii cValidator主要用法分析:
yii验证rulesit 分类: Yii yii的rules验证 cValidator主要属性 attributes ,builtInValidators,enableClientValidation,message,on,safe,skipOnError
 
- 基于vagrant的redis主从实验
dcj3sjt126com
vagrant
平台: Mac
工具: Vagrant
系统: Centos6.5
实验目的: Redis主从
实现思路
制作一个基于sentos6.5, 已经安装好reids的box, 添加一个脚本配置从机, 然后作为后面主机从机的基础box
制作sentos6.5+redis的box
mkdir vagrant_redis
cd vagrant_
- Memcached(二)、Centos安装Memcached服务器
frank1234
centosmemcached
一、安装gcc
rpm和yum安装memcached服务器连接没有找到,所以我使用的是make的方式安装,由于make依赖于gcc,所以要先安装gcc
开始安装,命令如下,[color=red][b]顺序一定不能出错[/b][/color]:
建议可以先切换到root用户,不然可能会遇到权限问题:su root 输入密码......
rpm -ivh kernel-head
- Remove Duplicates from Sorted List
hcx2013
remove
Given a sorted linked list, delete all duplicates such that each element appear only once.
For example,Given 1->1->2, return 1->2.Given 1->1->2->3->3, return&
- Spring4新特性——JSR310日期时间API的支持
jinnianshilongnian
spring4
Spring4新特性——泛型限定式依赖注入
Spring4新特性——核心容器的其他改进
Spring4新特性——Web开发的增强
Spring4新特性——集成Bean Validation 1.1(JSR-349)到SpringMVC
Spring4新特性——Groovy Bean定义DSL
Spring4新特性——更好的Java泛型操作API
Spring4新
- 浅谈enum与单例设计模式
247687009
java单例
在JDK1.5之前的单例实现方式有两种(懒汉式和饿汉式并无设计上的区别故看做一种),两者同是私有构
造器,导出静态成员变量,以便调用者访问。
第一种
package singleton;
public class Singleton {
//导出全局成员
public final static Singleton INSTANCE = new S
- 使用switch条件语句需要注意的几点
openwrt
cbreakswitch
1. 当满足条件的case中没有break,程序将依次执行其后的每种条件(包括default)直到遇到break跳出
int main()
{
int n = 1;
switch(n) {
case 1:
printf("--1--\n");
default:
printf("defa
- 配置Spring Mybatis JUnit测试环境的应用上下文
schnell18
springmybatisJUnit
Spring-test模块中的应用上下文和web及spring boot的有很大差异。主要试下来差异有:
单元测试的app context不支持从外部properties文件注入属性
@Value注解不能解析带通配符的路径字符串
解决第一个问题可以配置一个PropertyPlaceholderConfigurer的bean。
第二个问题的具体实例是:
 
- Java 定时任务总结一
tuoni
javaspringtimerquartztimertask
Java定时任务总结 一.从技术上分类大概分为以下三种方式: 1.Java自带的java.util.Timer类,这个类允许你调度一个java.util.TimerTask任务; 说明: java.util.Timer定时器,实际上是个线程,定时执行TimerTask类 &
- 一种防止用户生成内容站点出现商业广告以及非法有害等垃圾信息的方法
yangshangchuan
rank相似度计算文本相似度词袋模型余弦相似度
本文描述了一种在ITEYE博客频道上面出现的新型的商业广告形式及其应对方法,对于其他的用户生成内容站点类型也具有同样的适用性。
最近在ITEYE博客频道上面出现了一种新型的商业广告形式,方法如下:
1、注册多个账号(一般10个以上)。
2、从多个账号中选择一个账号,发表1-2篇博文