题目链接:http://61.187.179.132/JudgeOnline/problem.php?id=1898
题意:一个无向图。给出起点和终点,以及某些时刻某些点不能到达的信息。问从起点出发在时刻K到达汇点的方案数?
思路:如果没有那个限制就是普通的求矩阵的K次幂。现在有了限制,注意到最小公倍数为12,因此周期为12。那么若i时刻j点不能到达,那么i-1时刻的所有点向j置为0,同时i时刻的j向所有点的边置为0。然后求出前12个的矩阵的乘积A。那么对于K/12的求A的幂,对于K%12暴力即可。
#include <iostream>
#include <cstdio>
#include <string.h>
#include <algorithm>
#include <cmath>
#include <vector>
#include <queue>
#include <set>
#include <stack>
#include <string>
#include <map>
#include <ctype.h>
#include <time.h>
#define abs(x) ((x)>=0?(x):-(x))
#define i64 long long
#define u32 unsigned int
#define u64 unsigned long long
#define clr(x,y) memset(x,y,sizeof(x))
#define CLR(x) x.clear()
#define ph(x) push(x)
#define pb(x) push_back(x)
#define Len(x) x.length()
#define SZ(x) x.size()
#define PI acos(-1.0)
#define sqr(x) ((x)*(x))
#define MP(x,y) make_pair(x,y)
#define EPS 1e-15
#define FOR0(i,x) for(i=0;i<x;i++)
#define FOR1(i,x) for(i=1;i<=x;i++)
#define FOR(i,a,b) for(i=a;i<=b;i++)
#define FORL0(i,a) for(i=a;i>=0;i--)
#define FORL1(i,a) for(i=a;i>=1;i--)
#define FORL(i,a,b)for(i=a;i>=b;i--)
#define rush() int CC;for(scanf("%d",&CC);CC--;)
#define Rush(n) while(scanf("%d",&n)!=-1)
using namespace std;
void RD(int &x){scanf("%d",&x);}
void RD(i64 &x){scanf("%I64d",&x);}
void RD(u64 &x){scanf("%I64u",&x);}
void RD(u32 &x){scanf("%u",&x);}
void RD(double &x){scanf("%lf",&x);}
void RD(int &x,int &y){scanf("%d%d",&x,&y);}
void RD(i64 &x,i64 &y){scanf("%I64d%I64d",&x,&y);}
void RD(u32 &x,u32 &y){scanf("%u%u",&x,&y);}
void RD(double &x,double &y){scanf("%lf%lf",&x,&y);}
void RD(double &x,double &y,double &z){scanf("%lf%lf%lf",&x,&y,&z);}
void RD(int &x,int &y,int &z){scanf("%d%d%d",&x,&y,&z);}
void RD(i64 &x,i64 &y,i64 &z){scanf("%I64d%I64d%I64d",&x,&y,&z);}
void RD(u32 &x,u32 &y,u32 &z){scanf("%u%u%u",&x,&y,&z);}
void RD(char &x){x=getchar();}
void RD(char *s){scanf("%s",s);}
void RD(string &s){cin>>s;}
void PR(int x) {printf("%d\n",x);}
void PR(int x,int y) {printf("%d %d\n",x,y);}
void PR(i64 x) {printf("%I64d\n",x);}
void PR(i64 x,i64 y) {printf("%I64d %I64d\n",x,y);}
void PR(u32 x) {printf("%u\n",x);}
void PR(u64 x) {printf("%I64u\n",x);}
void PR(double x) {printf("%.6lf\n",x);}
void PR(double x,double y) {printf("%.5lf %.5lf\n",x,y);}
void PR(char x) {printf("%c\n",x);}
void PR(char *x) {printf("%s\n",x);}
void PR(string x) {cout<<x<<endl;}
void upMin(int &x,int y) {if(x>y) x=y;}
void upMin(i64 &x,i64 y) {if(x>y) x=y;}
void upMin(double &x,double y) {if(x>y) x=y;}
void upMax(int &x,int y) {if(x<y) x=y;}
void upMax(i64 &x,i64 y) {if(x<y) x=y;}
void upMax(double &x,double y) {if(x<y) x=y;}
const int mod=10000;
const i64 inf=((i64)1)<<60;
const double dinf=1e12;
const int INF=1000000;
const int N=55;
int n,m,S,T,K;
struct Matrix
{
int a[55][55];
void init(int x)
{
clr(a,0);
int i;
if(x) FOR0(i,n) a[i][i]=1;
}
Matrix operator*(Matrix p)
{
Matrix ans;
ans.init(0);
int i,j,k;
FOR0(k,n) FOR0(i,n) FOR0(j,n)
{
ans.a[i][j]+=a[i][k]*p.a[k][j]%mod;
ans.a[i][j]%=mod;
}
return ans;
}
Matrix pow(int n)
{
Matrix ans,p=*this;
ans.init(1);
while(n)
{
if(n&1) ans=ans*p;
p=p*p;
n>>=1;
}
return ans;
}
};
Matrix a[15];
int b[55],c[15][55];
void clear1(int t,int k)
{
int i;
FOR0(i,n) a[t].a[i][k]=0;
}
void clear2(int t,int k)
{
int i;
FOR0(i,n) a[t].a[k][i]=0;
}
int main()
{
RD(n,m); RD(S,T,K);
int i,j,x,y;
FOR1(i,m)
{
RD(x,y);
FOR0(j,12) a[j].a[x][y]=a[j].a[y][x]=1;
}
int M,t;
RD(M);
while(M--)
{
RD(t);
FOR0(i,t) RD(b[i]);
FOR0(i,12) c[i][b[i%t]]=1;
}
FOR0(i,12) FOR0(j,n) if(c[i][j])
{
clear1((i+11)%12,j);
clear2(i,j);
}
for(i=1;i<12;i++) a[i]=a[i-1]*a[i];
Matrix ans=a[11].pow(K/12);
if(K%12) ans=ans*a[K%12-1];
PR(ans.a[S][T]);
}