“矩阵代数初步”(Introduction to MATRIX ALGEBRA)课程由Prof. A.K.Kaw(University of South Florida)设计并讲授。
PDF格式学习笔记下载(Academia.edu)
第4章课程讲义下载(PDF)
Summary
Selected Problems
1. Let $$[A] = \begin{bmatrix}25& 3& 6\\ 7& 9& 2\end{bmatrix}$$ Find $[A]^{T}$.
Solution:
$$[A]^{T} = \begin{bmatrix}25& 7\\ 3& 9\\ 6& 2\end{bmatrix}$$
2. If $[A]$ and $[B]$ are two $n\times n$ symmetric matrices, show that $[A]+[B]$ is also symmetric.
Solution:
Let $[C]=[A]+[B]$, so we have $$c_{ij} = a_{ij} + b_{ij} = a_{ji} + b_{ji} =c_{ji}$$ that is, $[C]=[C]^{T}$.
3. What is the trace of $$[A] = \begin{bmatrix}7& 2& 3& 4\\ -5& -5& -5& -5\\ 6& 6& 7& 9\\ -5& 2& 3& 10\end{bmatrix}$$
Solution:
$$\text{tr}[A] = 7-5+7+10=19$$
4. Find the determinant of $$[A] = \begin{bmatrix}10& -7& 0\\ -3& 2.099& 6\\ 5& -1& 5\end{bmatrix}$$
Solution:
$$\det(A)=(-1)^{1+1}\times10\times\begin{vmatrix}2.099& 6\\ -1& 5\end{vmatrix} + (-1)^{1+2}\times(-7)\times\begin{vmatrix}-3& 6\\ 5& 5\end{vmatrix}$$ $$=10\times(2.099\times5+1\times6) + 7\times(-15-30) = -150.05$$
5. What is the value of a $n\times n$ matrix $\det(3[A])$?
Solution:
$$\det(3[A]) = 3^n\det(A)$$
6. For a $5\times5$ matrix $[A]$, the first row is interchanged with the fifth row, what is the determinant of the resulting matrix $[B]$?
Solution:
The sign would be changed if interchaged two row (column). Thus $$\det(B) = -\det(A)$$
7. What is the determinant of $$[A] = \begin{bmatrix}0& 1& 0& 0\\ 0& 0& 1& 0\\ 0& 0& 0& 1\\ 1& 0& 0& 0\end{bmatrix}$$
Solution:
$$[A] = \begin{bmatrix}0& 1& 0& 0\\ 0& 0& 1& 0\\ 0& 0& 0& 1\\ 1& 0& 0& 0\end{bmatrix}\Rightarrow R_1\leftrightarrow R_4 \begin{bmatrix}1& 0& 0& 0\\ 0& 0& 1& 0\\ 0& 0& 0& 1\\ 0& 1& 0& 0\end{bmatrix}$$ $$\Rightarrow R_2\leftrightarrow R_3 \begin{bmatrix}1& 0& 0& 0\\ 0& 0& 0& 1\\ 0& 0& 1& 0\\0& 1& 0& 0\end{bmatrix}$$ $$\Rightarrow R_2\leftrightarrow R_4 \begin{bmatrix}1& 0& 0& 0\\0& 1& 0& 0\\ 0& 0& 1& 0\\0& 0& 0& 1\end{bmatrix}=[B]$$ Thus $\det(A) = (-1)^{3}\det(B)=-1$.
8. Find the determinant of $$[A]=\begin{bmatrix}0& 0& 0\\ 2& 3& 5\\ 6& 9& 2\end{bmatrix}$$
Solution:
$\det(A)=0$ since the first row is zero.
9. Find the determinant of $$[A]=\begin{bmatrix}0& 0& 2& 3\\ 0& 2& 3& 5\\ 6& 7& 2& 3\\ 6.6& 7.7& 2.2& 3.3\end{bmatrix}$$
Solution:
Since $R_4 = 1.1R_3$, so $\det(A) = 0$.
10. Find the determinant of $$[A]=\begin{bmatrix}5& 0& 0& 0\\ 0& 3& 0& 0\\ 2& 5& 6& 0\\ 1& 2& 3& 9\end{bmatrix}$$
Solution:
This is a lower triangular matrix and hence $$\det(A) = 5\times3\times6\times9=810$$
11. Given the matrix $$[A]=\begin{bmatrix}125& 25& 5& 1\\ 512& 64& 8& 1\\ 1157& 89& 13& 1\\ 8& 4& 2& 1\end{bmatrix}$$ and $\det(A) = -32400$. Find the determinant of $$[A_1]=\begin{bmatrix}125& 25& 5& 1\\ 512& 64& 8& 1\\ 1141& 81& 9& -1\\ 8& 4& 2& 1\end{bmatrix};$$ $$[A_2]=\begin{bmatrix}125& 25& 1& 5\\ 512& 64& 1& 8\\ 1157& 89& 1& 13\\ 8& 4& 1& 2\end{bmatrix};$$ $$[A_3] = \begin{bmatrix} 125& 25& 5& 1\\ 1157& 89& 13& 1\\ 512& 64& 8& 1\\8& 4& 2& 1\end{bmatrix};$$ $$[A_4] = \begin{bmatrix} 125& 25& 5& 1\\ 1157& 89& 13& 1\\ 8& 4& 2& 1\\ 512& 64& 8& 1\end{bmatrix};$$ $$[A_5] = \begin{bmatrix} 125& 25& 5& 1\\ 512& 64& 8& 1\\ 1157& 89& 13& 1\\ 16& 8& 4& 2 \end{bmatrix}.$$
Solution:
$$[A]=\begin{bmatrix}125& 25& 5& 1\\ 512& 64& 8& 1\\ 1157& 89& 13& 1\\ 8& 4& 2& 1\end{bmatrix}\Rightarrow R_3-2R_4 \begin{bmatrix}125& 25& 5& 1\\ 512& 64& 8& 1\\ 1141& 81& 9& -1\\ 8& 4& 2& 1\end{bmatrix}=[A_1]$$ Thus $\det(A_1) = \det(A) =-32400$. $$[A]=\begin{bmatrix}125& 25& 5& 1\\ 512& 64& 8& 1\\ 1157& 89& 13& 1\\ 8& 4& 2& 1\end{bmatrix}\Rightarrow C_3\leftrightarrow C_4 \begin{bmatrix}125& 25& 1& 5\\ 512& 64& 1& 8\\ 1157& 89& 1& 13\\ 8& 4& 1& 2\end{bmatrix} = [A_2]$$ Thus $\det(A_2)=-\det(A)=32400$. $$[A]=\begin{bmatrix}125& 25& 5& 1\\ 512& 64& 8& 1\\ 1157& 89& 13& 1\\ 8& 4& 2& 1\end{bmatrix}\Rightarrow R_2\leftrightarrow R_3\begin{bmatrix} 125& 25& 5& 1\\ 1157& 89& 13& 1\\ 512& 64& 8& 1\\8& 4& 2& 1\end{bmatrix}= [A_3]$$ Thus $\det(A_3) = -\det(A) = 32400$. $$[A]=\begin{bmatrix}125& 25& 5& 1\\ 512& 64& 8& 1\\ 1157& 89& 13& 1\\ 8& 4& 2& 1\end{bmatrix}\Rightarrow \begin{cases} R_2\leftrightarrow R_3\\ R'_3\leftrightarrow R_4\end{cases} \begin{bmatrix} 125& 25& 5& 1\\ 1157& 89& 13& 1\\ 8& 4& 2& 1\\ 512& 64& 8& 1\end{bmatrix} = [A_4]$$ Thus $\det(A_4) = (-1)^2\det(A) = -32400$. $$[A]=\begin{bmatrix}125& 25& 5& 1\\ 512& 64& 8& 1\\ 1157& 89& 13& 1\\ 8& 4& 2& 1\end{bmatrix} \Rightarrow 2R_4\begin{bmatrix} 125& 25& 5& 1\\ 512& 64& 8& 1\\ 1157& 89& 13& 1\\ 16& 8& 4& 2 \end{bmatrix} = [A_5]$$ Thus $\det(A_5) = 2\det(A) = -64800$.
12. Find the determinant of $$[A] = \begin{bmatrix}25& 5& 1\\ 64& 8& 1\\ 144& 12& 5\end{bmatrix}$$
Solution:
$$\det(A) = (-1)^{1+3}a_{13}M_{13}+(-1)^{2+3}a_{23}M_{23} + (-1)^{3+3}a_{33}M_{33}$$ $$ = \begin{vmatrix}64& 8\\ 144& 12\end{vmatrix} - \begin{vmatrix}25& 5\\ 144& 12\end{vmatrix} + 5\times \begin{vmatrix}25& 5\\ 64& 8\end{vmatrix} = -564$$
13. Show that if $[A][B]=[I]$, where $[A]$, $[B]$ and $[I]$ are matrices of $n\times n$ size and $[I]$ is an identity matrix, then $\det(A)\neq0$ and $\det(B)\neq0$.
Solution: $$\det(A)\det(B)=\det(AB) =\det(I) = 1$$ $$\Rightarrow \det(A)\neq0,\ \det(B)\neq0.$$
14. If the determinant of a $4\times4$ matrix $[A]$ is given as 20, then what is the determinant of $5[A]$?
Solution:
$$\det(k[A])=k^n\det(A)$$ $$\Rightarrow \det(5[A]) = 5^4\det(A) = 625\times20=12500$$
15. If the matrix product $[A][B][B]$ is defined, what is $([A][B][C])^{T}$?
Solution:
$$([A][B])^{T}=[B]^{T}[A]^{T}$$ $$\Rightarrow ([A][B][C])^{T}=[C]^{T}([A][B])^{T}=[C]^{T}[B]^{T}[A]^{T}$$
16. The determinant of the matrix $$[A] = \begin{bmatrix}25& 5& 1\\ 0& 3& 8\\ 0& 9& a\end{bmatrix}$$ is 50. What is the value of $a$?
Solution:
$$\det(A) = 25\times\begin{vmatrix}3& 8\\ 9& a\end{vmatrix} = 25\times(3a-72)=50$$ $$\Rightarrow a={74\over3}$$
17. $[A]$ is a $5\times 5$ matrix and a matrix $[B]$ is obtained by the row operations of replacing Row1 with Row3, and then Row3 is replaced by a linear combination of $2\times$Row3$+4\times$Row2. If $\det(A)=17$, then what is the value of $\det(B)$?
Solution:
The process is $$[A]\Rightarrow R_1\leftrightarrow R_3 \Rightarrow 2R_3\Rightarrow R_3+4R_2\Rightarrow [B]$$ Thus $$\det(B) = (-1)\times2\cdot\det(A) = -34$$