BZOJ 1648: [Usaco2006 Dec]Cow Picnic 奶牛野餐

题目

1648: [Usaco2006 Dec]Cow Picnic 奶牛野餐

Time Limit: 5 Sec  Memory Limit: 64 MB
Submit: 425  Solved: 267
[Submit][Status]

Description

The cows are having a picnic! Each of Farmer John's K (1 <= K <= 100) cows is grazing in one of N (1 <= N <= 1,000) pastures, conveniently numbered 1...N. The pastures are connected by M (1 <= M <= 10,000) one-way paths (no path connects a pasture to itself). The cows want to gather in the same pasture for their picnic, but (because of the one-way paths) some cows may only be able to get to some pastures. Help the cows out by figuring out how many pastures are reachable by all cows, and hence are possible picnic locations.

 

  K(1≤K≤100)只奶牛分散在N(1≤N≤1000)个牧场.现在她们要集中起来进餐.牧场之间有M(1≤M≤10000)条有向路连接,而且不存在起点和终点相同的有向路.她们进餐的地点必须是所有奶牛都可到达的地方.那么,有多少这样的牧场呢?

Input

* Line 1: Three space-separated integers, respectively: K, N, and M * Lines 2..K+1: Line i+1 contains a single integer (1..N) which is the number of the pasture in which cow i is grazing. * Lines K+2..M+K+1: Each line contains two space-separated integers, respectively A and B (both 1..N and A != B), representing a one-way path from pasture A to pasture B.

 第1行输入K,N,M.接下来K行,每行一个整数表示一只奶牛所在的牧场编号.接下来M行,每行两个整数,表示一条有向路的起点和终点

Output

* Line 1: The single integer that is the number of pastures that are reachable by all cows via the one-way paths.

    所有奶牛都可到达的牧场个数

Sample Input

2 4 4
2
3
1 2
1 4
2 3
3 4


INPUT DETAILS:

4<--3
^ ^
| |
| |
1-->2

The pastures are laid out as shown above, with cows in pastures 2 and 3.

Sample Output

2

牧场3,4是这样的牧场.

HINT

 

Source

题解

这一道题目直接用普通的搜索就可以了,记一个F[i][j]表示i头牛是否可以到底j农场,然后对每个牛进行DFS,最后对每个农场进行一次统计就可以了。Orz其实是因为 刚买到了机械键盘,所以像多打一点字,所以才写写水题的ORz

代码

 1 /*Author:WNJXYK*/
 2 #include<cstdio>
 3 using namespace std;
 4 
 5 const int Maxn=100;
 6 const int Maxm=1000;
 7 int k,m,n;
 8 int f[Maxn+10][Maxm+10];
 9 struct Edge{
10     int v;
11     int nxt;
12     Edge(){}
13     Edge(int a,int b){
14         v=a;
15         nxt=b;
16     }
17 };
18 const int Maxe=10000;
19 Edge e[Maxe+10];
20 int head[Maxm+10];
21 int nume=0;
22 int cow[Maxn+10];
23 inline void addEdge(int u,int v){
24     e[++nume]=Edge(v,head[u]);
25     head[u]=nume;
26 }
27 void dfs(int x,int loc){
28     f[x][loc]=true;
29     for (int i=head[loc];i;i=e[i].nxt){
30         int v=e[i].v;
31         if (!f[x][v]){
32             dfs(x,v);
33         }
34     }
35 } 
36 int main(){
37     scanf("%d%d%d",&k,&n,&m);
38     for (int i=1;i<=k;i++) scanf("%d",&cow[i]);
39     for (int i=1;i<=m;i++){
40         int x,y;
41         scanf("%d%d",&x,&y);
42         addEdge(x,y); 
43     }
44     for (int i=1;i<=k;i++){
45         dfs(i,cow[i]);
46     }
47     int Ans=0;
48     for (int i=1;i<=n;i++){
49         bool flag=true;
50         for (int j=1;j<=k;j++){
51             flag=flag&&f[j][i];
52             if (!flag) break;
53         }
54         if (flag) Ans++;
55     }
56     printf("%d\n",Ans);
57     return 0;
58 }
View Code

 

你可能感兴趣的:(USACO)