二叉查找树中节点的删除。

    今天,在写数据结构的二叉查找树时,写到remove方法时,突然卡壳了。后来,打开书细看时,竟然耗费了不少时间才看懂。

    现将思想记录下来,以免以后再次遗忘。

    二叉查找树重要性质:

                                            (1)若左子树不空,则左子树上所有结点的值均小于它的根结点的值;

                                            (2)若右子树不空,则右子树上所有结点的值均大于它的根结点的值;

                                            (3)左、右子树也分别为二叉排序树;

    现有,如下一棵二叉查找树。

                             二叉查找树中节点的删除。

                                                                      (图1)

    现在,若要删除图1中,任意节点,需要考虑如下三种情况:

    (1)需要删除的节点下并没有其他子节点。

    (2)需要删除的节点下有一个子节点(左或右)。

    (3)需要删除的节点下有两个子节点(既左右节点都存在)。

    第一种情况直接删除即可,下面,直接讨论第二种情况。

    若我们要删除的是3号节点,由图1可以看到,它下面还有一个4号子节点。由下图2,可以看出,对于这种办法,我们只需要想办法,让5号节点的左子树的指针指向4就可以了。

                                        二叉查找树中节点的删除。

                                                                       (图2)

    第三种情况,既我们要删除的节点下,有2个子节点。如图3,我们先在需要删除的节点的右子树中,找到一个最小的值(因为右子树中的节点的值一定大于根节点)。然后,用找到的最小的值与需要删除的节点的值替换。然后,再将最小值的原节点进行删除(图4)。

                                          二叉查找树中节点的删除。

                                                                          (图3)

                                           二叉查找树中节点的删除。

                                                                             (图4)

    好了,思路大概就这样了。下面见代码。

	private Node<T> remove(T data,Node<T> node)

	{

		if(data == null)

			return node;

		/**

		 * compare函数内部实现大致如下:

		 * ((comparable)data).compareTo(node.element);

		 * 比较需要删除的数据与当前节点的值的大小

		 */

		int result = compare(data,node.element);

		//result<0:表示需要删除的节点在左子树。(二叉查找数的性质)

		if(result<0)

			node.left = remove(data,node.left);

		else if(result>0)//在右子树

			node.right = remove(data,node.right);

		else if(node.left != null && node.right != null)//找到需要删除的节点且节点下有两个子节点

		{

			/**先找到需要删除的节点下,右子树中最小的节点

			 * 并将它的值赋给需要删除的节点。

			 * */

			node.element = findMin(node.right).element;

			//删除前面找到的最小的节点。

			node.right = remove(node.right);

		}

		else//找到需要删除的节点且节点下有一个子节点(左或者右)

			node = (node.left != null) ? node.left : node.right;

	}

	

	public void remove(T data)

	{

		this.remove(data,root);

	}

    学习笔记。拍砖请轻拍。- -

 

你可能感兴趣的:(二叉查找树)