- c++ opencv4.3 sift匹配
图像处理大大大大大牛啊
图像处理opencv实战代码讲解opencvsiftc++opencv4特征点
c++opencv4.3sift匹配main.cppintmain(){vectorkeypoints1,keypoints2;Matimg1,img2,descriptors1,descriptors2;intnumF
- 特征点提取与匹配原文论文下载
长沙有肥鱼
视觉SLAM十四讲计算机视觉
ORB原文下载链接:(PDF)ORB:anefficientalternativetoSIFTorSURFSIFT原文下载链接:https://www.cs.ubc.ca/~lowe/papers/ijcv04.pdfSURF原文下载链接:https://www.cs.jhu.edu/~misha/ReadingSeminar/Papers/Bay08.pdfORB和AKAZE对比论文下载链接:h
- Python计算机视觉编程——第二章 局部图像描述子
adchloe
python计算机视觉开发语言
目录1Harris角点检测器2SIFT2.1兴趣点2.2描述子2.3检测兴趣点2.4匹配描述子1Harris角点检测器Harris角点检测算法是简单的角点检测算法,主要思想是,如果像素周围显示存在多于一个方向的边,认为该点为兴趣点,称为角点。把图像域中点x上的对称半正定矩阵Mr=Ml(x)M_{r}=M_{l}(\mathbf{x})Mr=Ml(x)定义为:M1=∇I ∇IT=[IxIy][IxI
- opencv “未声明的标识符:SurfFeatureDetector”问题解决办法
adsdriver
Opencv学习点滴opencv特征点检测未声明的标识符SurfFeaturDetector
在VS中使用opencv2.4.X版本的时候,如果使用SurfFeatureDetector(或者SiftFeatureDetector)做特征点检测的时候,按照官方文档上的示例代码include头文件为:opencv2/features2d/features2d.hpp,则会出现如下报错:errorC2065:“SurfFeatureDetector”:未声明的标识符。1、实际上2.4.X版本的
- 基于Python-OpenCV的角点检测、直线检测、椭圆检测、矩形检测
童鸢
pythonopencv开发语言
目录概要一、角点检测1.Harris角点检测2.Shi-Tomas算法3.SIFT算法4.FAST算法概要本博客梳理了几种常见的**角点检测、直线检测、椭圆检测、矩形检测**算法,本博客只关注代码,不关注每种算法的原理。一、角点检测常见的角点检测方法有Harris角点检测、Shi-Tomas算法角点检测、sift算法角点检测、fast角点检测、ORM算法角点检测。1.Harris角点检测impor
- 05基于卷积神经网络-支持向量机(自动寻优)CNN-SVM数据分类算法
机器不会学习CSJ
cnn支持向量机分类人工智能
CNN原理卷积神经网络(ConvolutionalNeuralNetwork,CNN)是一种深度学习模型,广泛用于计算机视觉领域。CNN的核心思想是通过卷积层和池化层来自动提取图像中的特征,从而实现对图像的高效处理和识别。在传统的机器学习方法中,图像特征的提取通常需要手工设计的特征提取器,如SIFT、HOG等。而CNN则可以自动从数据中学习到特征表示。这是因为CNN模型的卷积层使用了一系列的卷积核
- R-CNN、Fast R-CNN、Faster R-CNN实现
今 晚 打 老 虎
面试之CV基础知识深度学习点滴
R-CNN:传统的目标检测算法:使用穷举法(不同大小比例的滑窗)进行区域选择,时间复杂度高对提取的区域进行特征提取(HOG或者SIFT),对光照、背景等鲁棒性差使用分类器对提取的特征进行分类(SVM或Adaboost)R-CNN的过程:采用SelectiveSearch生成类别独立的候选区域使用AlexNet来提取特征,输入是227*227*3,输出是4096将4096维的特征向量送入SVM来分类
- 03-堆排序(Heap Sort)
ducktobey
堆排序(HeapSort)结合上一讲的内容,发现选择排序可以使用堆排序来进行优化。所以堆排序可以认为是对选择排序的一种优化。因为利用堆来获取最大值时,发现与选择排序时做的事情差不多。堆排序的执行流程如下对序列进行原地建堆(heapify)重复执行以下操作,直到堆的元素数量为1交换堆顶元素与尾元素堆的元素减1对0位置进行一次siftDown操作假设现在得到的数据如下将这些数据进行原地建堆后,得到的结
- Verilog刷题笔记25
十六追梦记
笔记
题目:You’realreadyfamiliarwithbitwiseoperationsbetweentwovalues,e.g.,a&bora^b.Sometimes,youwanttocreateawidegatethatoperatesonallofthebitsofonevector,like(a[0]&a[1]&a[2]&a[3]…),whichgetstediousifthevect
- 图像搜索和分类
顽皮的石头7788121
基于内容的搜索检索在视觉上具有相似性的图像,在图像数据库中返回具相似颜色、纹理和物体以及场景的图像。视觉单词通常通过特征描述子(SIFT)等结合聚类算法得到聚类质心。用视觉单词直方图来表示一个图像。图像索引根据图像特征分别建立索引,以索引的方式搜索图像。图像分类图像分类算法类似,提取关键特征,以机器学习方法进行分类
- Airtest使用的图像识别算法识别比较慢解决办法,改变算法的运算顺序或者指定一种算法,提高Airtest图像识别效率
大数据采集及分析
服务器
Airtest使用的图像识别算法识别比较慢解决办法,改变算法的运算顺序或者指定一种算法,提高Airtest图像识别效率调整Airtest图像识别算法的使用顺序fromairtest.core.settingsimportSettingsasST#调整Airtest图像识别算法的使用顺序ST.CVSTRATEGY=["mstpl","tpl","sift","brisk"]指定一种算法(mstpl算
- 数字图像处理(实践篇)四十三 OpenCV-Python 使用SURF算法检测图像上的特征点的实践
Jackilina_Stone
数字图像处理(入门篇实践篇综合篇)python数字图像处理计算机视觉OpenCV
目录一SURF算法概述1积分图2SURF算法3SIFT与SURF二涉及的函数三实践一SURF算法概述
- 质数筛—欧拉筛,一步一步的剖析
LINGLCY
算法
本篇我们来一点点剖析欧拉筛算法首先贴上完整代码(以封装成函数的形式呈现),n为要求质数的范围#defineN10000000longlongzs[N]={0},size=0;charnotzs[N]={1,1};voidEuler_sift(intn){for(inti=2;in)break;notzs[zs[j]*i]=1;if(i%zs[j]==0)break;}}}欧拉筛的时间复杂度为o(n
- CVPR 2023: SFD2 Semantic-Guided Feature Detection and Description
结构化文摘
sketchui分层架构
我们使用以下6个分类标准对本文的研究选题进行分析:1.特征提取方法:手工特征:这些是手动设计的特征,例如SIFT、SURF、ORB等,它们依靠手工制作的描述符来表示图像块。它们通常速度快且计算效率高,但可能无法捕捉场景的全部复杂性。学习特征:这些特征是使用深度学习技术(例如卷积神经网络(CNN))从数据中自动学习的。它们可以捕捉像素之间更复杂的关系,并有可能获得更好的性能,但计算成本可能很高。语义
- Opencv学习笔记——特征匹配
纸箱里的猫咪
Opencv学习笔记opencv计算机视觉学习
文章目录Brute-Force蛮力匹配1对1的匹配k对最佳匹配随机抽样一致算法(Randomsampleconsensus,RANSAC)单应性矩阵Brute-Force蛮力匹配 通过SIFT算法可以得到图像关键点,通过比较两张图像的关键点,也就是比较关键点向量之间的差异,Brute-Force蛮力匹配通过比较特征向量,离得最近的特征向量也就是最相似的。默认的是用归一化的欧氏距离。bf=cv2.
- 如何过滤离线logcat日志文件?
helloworld1238888
android-studiojava
1.需求:HowdidAndroidStudioLogcattoreadthefileswhichhavesaveinlogcat?IsavedsomelogsandwouldliketoopenthemwithAndroidStudio-Logcatinterfaceandbeabletoseethecoloursandapplysomefiltersjustasifthephonewascon
- 02神经网络的学习及代码实现
我闻 如是
神经网络学习人工智能
“学习”是指从训练数据中自动获取最优权重参数的过程。引入损失函数指标,学习的目的是以该损失函数为基准,找出尽可能小的损失函数的值。1、从数据中学习从数据中学习规律,模式,避免人为介入。先从图像中提取特征量,再用机器学习技术学习这些特征量的模式。常用的特征量包括SIFT、SURF和HOG等,使用特征量将图像数据转换为向量,然后对转换后的向量使用SVM、KNN等分类器进行学习。这种方法也需要人工设计特
- R-CNN阅读笔记
tang-0203
R-CNN系列文章R-CNN阅读笔记目标检测VOC
原文地址:http://blog.csdn.net/hjimce/article/details/50187029作者:hjimce一、相关理论过去十年在许多视觉识别任务中主要流行的是SIFT与HOG(这两种方法都是基于图像中梯度方向直方图的特征提取方法),但在过去十年中的进步非常缓慢。R-CNN是第一次将CNN用到目标检测领域上来的算法。(待确认)本篇博文主要讲解2014年CVPR上的经典pap
- 12.2 关键点提取——SIFT
YANQ662
7.数据处理计算机视觉人工智能
一、理论文章看了以下博文:Sift中尺度空间、高斯金字塔、差分金字塔(DOG金字塔)、图像金字塔-CSDN博客该文章对SIFT写的很详细,所以在这里我直接抄过来作为笔记。如果以后作者变为付费文章可以提醒我删除。1.图像金字塔图像金字塔是一种以多分辨率来解释图像的结构,通过对原始图像进行多尺度像素采样的方式,生成N个不同分辨率的图像。把具有最高级别分辨率的图像放在底部,以金字塔形状排列,往上是一系列
- 计算机视觉-PCV包、Vlfeat库、Graphviz库的下载安装配置及问题解决(使用anaconda3 & python 3.8.5)
yt_0618
python开发语言
目录一、PCV包配置二、Vlfeat配置三、在PCV包的sift.py文件中对路径进行修改四、以上步骤所需注意的错误五、Graphviz配置一、PCV包配置1.下载PCV包,点开网址直接下载安装包(不用解压),下载之后将安装包放在任意目录位置https://codeload.github.com/Li-Shu14/PCV/zip/masterhttps://codeload.github.com/
- Queue集合之PriorityBlockingQueue详解
乐乐Java路漫漫
队列java队列java数据结构
集合系列文章文章目录集合系列文章前言1、PriorityBlockingQueue是什么?2、查看类图接口3.源码解析3.1构造器3.2offer操作3.2.1扩容3.2.2建堆算法3.2.3图文解释3.3poll操作3.3.1dequeue出队源码3.3.2siftDownComparable堆调整源码总结前言1、PriorityBlockingQueue是什么?集合中无界优先队列priorit
- 数字图像处理(实践篇)四十一 OpenCV-Python 使用sift算法检测图像上的特征点实践
Jackilina_Stone
数字图像处理(入门篇实践篇综合篇)pythonOpenCV数字图像处理计算机视觉
目录一涉及的函数二实践2004年,D.Lowe在论文DistinctiveImageFeaturesfromScale-InvariantKeypoints中提出了一种新算法,即尺度不变特征变换(SIFT),该算法提取关键点并计算其描述符。SIFT提取图像的局部特征,在尺度空间寻找极值点,并提取出其位置尺度和方向信息。SIFT算法所查找的关键点都是一些十分突出,不会因光照仿射变换和噪声等因素而变换
- [opencvsharp]C#基于Fast算法实现角点检测
FL1623863129
C#算法
角点检测算法有很多,比如Harris角点检测、Shi-Tomas算法、sift算法、SURF算法、ORB算法、BRIEF算法、Fast算法等,今天我们使用C#的opencvsharp库实现Fast角点检测【算法介绍】fast算法Fast(全称Featuresfromacceleratedsegmenttest)是一种用于角点检测的算法,该算法的原理是取图像中检测点,以该点为圆心的周围邻域内像素点判
- [C#][opencvsharp]opencvsharp sift和surf特征点匹配
FL1623863129
C#人工智能机器学习算法
SIFT特征和SURF特征比较SIFT特征基本介绍SIFT(Scale-InvariantFeatureTransform)特征检测关键特征:建立尺度空间,寻找极值关键点定位(寻找关键点准确位置与删除弱边缘)关键点方向指定关键点描述子建立尺度空间,寻找极值工作原理构建图像高斯金字塔,求取DOG,发现最大与最小值在每一级构建的高斯金字塔,每一层根据sigma的值不同,可以分为几个待级,最少有4个。关
- 【知识---图像特征提取算法--尺度不变特征变换(Scale-Invariant Feature Transform, SIFT)原理、特点、应用场合及代码】
fyc300
算法计算机视觉图像处理人工智能ubuntu
提示:文章写完后,目录可以自动生成,如何生成可参考右边的帮助文档文章目录前言一、尺度不变特征变换(Scale-InvariantFeatureTransform,SIFT)原理:二、尺度不变特征变换的特点:三、尺度不变特征变换的不足:四、尺度不变特征变换的应用场合:五、尺度不变特征变换的代码示例:总结前言图像特征提取是计算机视觉领域中的一个重要任务,它有助于将图像转换为可用于分析和识别的数值表示。
- 计算机视觉的基本概念和技术有哪些?
shanshan2099
计算机视觉人工智能
计算机视觉是一种让计算机能够“看”和理解图像和视频的技术。以下是一些基本的计算机视觉的概念和技术:图像处理:这是计算机视觉的基础,包括图像的基本操作,如滤波、边缘检测、色彩空间转换等。特征提取:这是从图像中提取有用信息的过程,例如SIFT、SURF、HOG等。目标检测和识别:这是识别图像中特定对象的过程,例如使用Haar级联、R-CNN、YOLO等技术。深度学习:这是一种强大的机器学习技术,被广泛
- 第七讲 视觉里程计(特征点法)
mjwz5294
前段的作用就是‘估算运动’,后段的作用的对前段的结果进行优化统一。前端根据相邻图像的信息估计出粗略的相机运动信息,作为后端的初始值。前端的实现,根据是否需要提取特征点,分为特征点法和直接法。一、特征点法:1、图像特征是一组与计算任务相关的信息,计算任务取决于具体的应用2、特征点在相机移动后能够保持稳定3、特征点性质:可重复性、可区别性、高效率、本地性4、关键点、描述子5、SIFT特征、FAST关键
- 图像处理常用算法介绍
竹叶青lvye
程序员的数学图像处理计算机视觉人工智能
此篇简单回顾下图像处理领域常用到的一些算法,这边只对每个知识点重要的点做一些记录,便于快速的知其形,会其意。一.SIFT(Scale-Invariantfeaturetransform)特征重点是了解DOG(DifferenceofGaussian)高斯差分图像是如何生成的,以及求取关键点,求取关键点的主方向,并以此主方向来做坐标系,梯度方向和梯度幅值按新的坐标系进行计算,构造一个特征向量描述子。
- Opencv C++ SIFT特征提取(单图像,多图像)+如何设置阈值+如何对文件夹进行批处理+如何设置掩膜裁剪影像
海棠RS
OpenCV-工程向opencv人工智能计算机视觉c++
一、何谓SITF特征提取,它有什么作用?SIFT(Scale-InvariantFeatureTransform)是一种用于图像处理和计算机视觉的特征提取算法。由DavidLowe于1999年首次提出,它是一种非常有效的局部特征描述符,具有尺度不变性、旋转不变性和对部分遮挡的鲁棒性。SIFT特征提取的主要步骤包括:尺度空间极值检测(Scale-SpaceExtremaDetection):通过不同
- SIFT特征提取及其opencv实现
小方爱自律
CVCV
SIFT特征提取及其opencv实现SIFT特征提取算法的实质是寻找图像中对位置、尺度、旋转等保持不变的关键点,其步骤主要有如下四步:尺度空间极值检测:搜索所有尺度上的图像位置。通过高斯微分函数来识别潜在的对于尺度和旋转不变的兴趣点。关键点定位:在每个候选的位置上,通过一个拟合精细的模型来确定位置和尺度。关键点的选择依据于它们的稳定程度。方向确定:基于图像局部的梯度方向,分配给每个关键点位置一个或
- Enum用法
不懂事的小屁孩
enum
以前的时候知道enum,但是真心不怎么用,在实际开发中,经常会用到以下代码:
protected final static String XJ = "XJ";
protected final static String YHK = "YHK";
protected final static String PQ = "PQ";
- 【Spark九十七】RDD API之aggregateByKey
bit1129
spark
1. aggregateByKey的运行机制
/**
* Aggregate the values of each key, using given combine functions and a neutral "zero value".
* This function can return a different result type
- hive创建表是报错: Specified key was too long; max key length is 767 bytes
daizj
hive
今天在hive客户端创建表时报错,具体操作如下
hive> create table test2(id string);
FAILED: Execution Error, return code 1 from org.apache.hadoop.hive.ql.exec.DDLTask. MetaException(message:javax.jdo.JDODataSto
- Map 与 JavaBean之间的转换
周凡杨
java自省转换反射
最近项目里需要一个工具类,它的功能是传入一个Map后可以返回一个JavaBean对象。很喜欢写这样的Java服务,首先我想到的是要通过Java 的反射去实现匿名类的方法调用,这样才可以把Map里的值set 到JavaBean里。其实这里用Java的自省会更方便,下面两个方法就是一个通过反射,一个通过自省来实现本功能。
1:JavaBean类
1 &nb
- java连接ftp下载
g21121
java
有的时候需要用到java连接ftp服务器下载,上传一些操作,下面写了一个小例子。
/** ftp服务器地址 */
private String ftpHost;
/** ftp服务器用户名 */
private String ftpName;
/** ftp服务器密码 */
private String ftpPass;
/** ftp根目录 */
private String f
- web报表工具FineReport使用中遇到的常见报错及解决办法(二)
老A不折腾
finereportweb报表java报表总结
抛砖引玉,希望大家能把自己整理的问题及解决方法晾出来,Mark一下,利人利己。
出现问题先搜一下文档上有没有,再看看度娘有没有,再看看论坛有没有。有报错要看日志。下面简单罗列下常见的问题,大多文档上都有提到的。
1、没有返回数据集:
在存储过程中的操作语句之前加上set nocount on 或者在数据集exec调用存储过程的前面加上这句。当S
- linux 系统cpu 内存等信息查看
墙头上一根草
cpu内存liunx
1 查看CPU
1.1 查看CPU个数
# cat /proc/cpuinfo | grep "physical id" | uniq | wc -l
2
**uniq命令:删除重复行;wc –l命令:统计行数**
1.2 查看CPU核数
# cat /proc/cpuinfo | grep "cpu cores" | u
- Spring中的AOP
aijuans
springAOP
Spring中的AOP
Written by Tony Jiang @ 2012-1-18 (转)何为AOP
AOP,面向切面编程。
在不改动代码的前提下,灵活的在现有代码的执行顺序前后,添加进新规机能。
来一个简单的Sample:
目标类:
[java]
view plain
copy
print
?
package&nb
- placeholder(HTML 5) IE 兼容插件
alxw4616
JavaScriptjquery jQuery插件
placeholder 这个属性被越来越频繁的使用.
但为做HTML 5 特性IE没能实现这东西.
以下的jQuery插件就是用来在IE上实现该属性的.
/**
* [placeholder(HTML 5) IE 实现.IE9以下通过测试.]
* v 1.0 by oTwo 2014年7月31日 11:45:29
*/
$.fn.placeholder = function
- Object类,值域,泛型等总结(适合有基础的人看)
百合不是茶
泛型的继承和通配符变量的值域Object类转换
java的作用域在编程的时候经常会遇到,而我经常会搞不清楚这个
问题,所以在家的这几天回忆一下过去不知道的每个小知识点
变量的值域;
package 基础;
/**
* 作用域的范围
*
* @author Administrator
*
*/
public class zuoyongyu {
public static vo
- JDK1.5 Condition接口
bijian1013
javathreadConditionjava多线程
Condition 将 Object 监视器方法(wait、notify和 notifyAll)分解成截然不同的对象,以便通过将这些对象与任意 Lock 实现组合使用,为每个对象提供多个等待 set (wait-set)。其中,Lock 替代了 synchronized 方法和语句的使用,Condition 替代了 Object 监视器方法的使用。
条件(也称为条件队列或条件变量)为线程提供了一
- 开源中国OSC源创会记录
bijian1013
hadoopsparkMemSQL
一.Strata+Hadoop World(SHW)大会
是全世界最大的大数据大会之一。SHW大会为各种技术提供了深度交流的机会,还会看到最领先的大数据技术、最广泛的应用场景、最有趣的用例教学以及最全面的大数据行业和趋势探讨。
二.Hadoop
&nbs
- 【Java范型七】范型消除
bit1129
java
范型是Java1.5引入的语言特性,它是编译时的一个语法现象,也就是说,对于一个类,不管是范型类还是非范型类,编译得到的字节码是一样的,差别仅在于通过范型这种语法来进行编译时的类型检查,在运行时是没有范型或者类型参数这个说法的。
范型跟反射刚好相反,反射是一种运行时行为,所以编译时不能访问的变量或者方法(比如private),在运行时通过反射是可以访问的,也就是说,可见性也是一种编译时的行为,在
- 【Spark九十四】spark-sql工具的使用
bit1129
spark
spark-sql是Spark bin目录下的一个可执行脚本,它的目的是通过这个脚本执行Hive的命令,即原来通过
hive>输入的指令可以通过spark-sql>输入的指令来完成。
spark-sql可以使用内置的Hive metadata-store,也可以使用已经独立安装的Hive的metadata store
关于Hive build into Spark
- js做的各种倒计时
ronin47
js 倒计时
第一种:精确到秒的javascript倒计时代码
HTML代码:
<form name="form1">
<div align="center" align="middle"
- java-37.有n 个长为m+1 的字符串,如果某个字符串的最后m 个字符与某个字符串的前m 个字符匹配,则两个字符串可以联接
bylijinnan
java
public class MaxCatenate {
/*
* Q.37 有n 个长为m+1 的字符串,如果某个字符串的最后m 个字符与某个字符串的前m 个字符匹配,则两个字符串可以联接,
* 问这n 个字符串最多可以连成一个多长的字符串,如果出现循环,则返回错误。
*/
public static void main(String[] args){
- mongoDB安装
开窍的石头
mongodb安装 基本操作
mongoDB的安装
1:mongoDB下载 https://www.mongodb.org/downloads
2:下载mongoDB下载后解压
 
- [开源项目]引擎的关键意义
comsci
开源项目
一个系统,最核心的东西就是引擎。。。。。
而要设计和制造出引擎,最关键的是要坚持。。。。。。
现在最先进的引擎技术,也是从莱特兄弟那里出现的,但是中间一直没有断过研发的
 
- 软件度量的一些方法
cuiyadll
方法
软件度量的一些方法http://cuiyingfeng.blog.51cto.com/43841/6775/在前面我们已介绍了组成软件度量的几个方面。在这里我们将先给出关于这几个方面的一个纲要介绍。在后面我们还会作进一步具体的阐述。当我们不从高层次的概念级来看软件度量及其目标的时候,我们很容易把这些活动看成是不同而且毫不相干的。我们现在希望表明他们是怎样恰如其分地嵌入我们的框架的。也就是我们度量的
- XSD中的targetNameSpace解释
darrenzhu
xmlnamespacexsdtargetnamespace
参考链接:
http://blog.csdn.net/colin1014/article/details/357694
xsd文件中定义了一个targetNameSpace后,其内部定义的元素,属性,类型等都属于该targetNameSpace,其自身或外部xsd文件使用这些元素,属性等都必须从定义的targetNameSpace中找:
例如:以下xsd文件,就出现了该错误,即便是在一
- 什么是RAID0、RAID1、RAID0+1、RAID5,等磁盘阵列模式?
dcj3sjt126com
raid
RAID 1又称为Mirror或Mirroring,它的宗旨是最大限度的保证用户数据的可用性和可修复性。 RAID 1的操作方式是把用户写入硬盘的数据百分之百地自动复制到另外一个硬盘上。由于对存储的数据进行百分之百的备份,在所有RAID级别中,RAID 1提供最高的数据安全保障。同样,由于数据的百分之百备份,备份数据占了总存储空间的一半,因而,Mirror的磁盘空间利用率低,存储成本高。
Mir
- yii2 restful web服务快速入门
dcj3sjt126com
PHPyii2
快速入门
Yii 提供了一整套用来简化实现 RESTful 风格的 Web Service 服务的 API。 特别是,Yii 支持以下关于 RESTful 风格的 API:
支持 Active Record 类的通用API的快速原型
涉及的响应格式(在默认情况下支持 JSON 和 XML)
支持可选输出字段的定制对象序列化
适当的格式的数据采集和验证错误
- MongoDB查询(3)——内嵌文档查询(七)
eksliang
MongoDB查询内嵌文档MongoDB查询内嵌数组
MongoDB查询内嵌文档
转载请出自出处:http://eksliang.iteye.com/blog/2177301 一、概述
有两种方法可以查询内嵌文档:查询整个文档;针对键值对进行查询。这两种方式是不同的,下面我通过例子进行分别说明。
二、查询整个文档
例如:有如下文档
db.emp.insert({
&qu
- android4.4从系统图库无法加载图片的问题
gundumw100
android
典型的使用场景就是要设置一个头像,头像需要从系统图库或者拍照获得,在android4.4之前,我用的代码没问题,但是今天使用android4.4的时候突然发现不灵了。baidu了一圈,终于解决了。
下面是解决方案:
private String[] items = new String[] { "图库","拍照" };
/* 头像名称 */
- 网页特效大全 jQuery等
ini
JavaScriptjquerycsshtml5ini
HTML5和CSS3知识和特效
asp.net ajax jquery实例
分享一个下雪的特效
jQuery倾斜的动画导航菜单
选美大赛示例 你会选谁
jQuery实现HTML5时钟
功能强大的滚动播放插件JQ-Slide
万圣节快乐!!!
向上弹出菜单jQuery插件
htm5视差动画
jquery将列表倒转顺序
推荐一个jQuery分页插件
jquery animate
- swift objc_setAssociatedObject block(version1.2 xcode6.4)
啸笑天
version
import UIKit
class LSObjectWrapper: NSObject {
let value: ((barButton: UIButton?) -> Void)?
init(value: (barButton: UIButton?) -> Void) {
self.value = value
- Aegis 默认的 Xfire 绑定方式,将 XML 映射为 POJO
MagicMa_007
javaPOJOxmlAegisxfire
Aegis 是一个默认的 Xfire 绑定方式,它将 XML 映射为 POJO, 支持代码先行的开发.你开发服 务类与 POJO,它为你生成 XML schema/wsdl
XML 和 注解映射概览
默认情况下,你的 POJO 类被是基于他们的名字与命名空间被序列化。如果
- js get max value in (json) Array
qiaolevip
每天进步一点点学习永无止境max纵观千象
// Max value in Array
var arr = [1,2,3,5,3,2];Math.max.apply(null, arr); // 5
// Max value in Jaon Array
var arr = [{"x":"8/11/2009","y":0.026572007},{"x"
- XMLhttpRequest 请求 XML,JSON ,POJO 数据
Luob.
POJOjsonAjaxxmlXMLhttpREquest
在使用XMlhttpRequest对象发送请求和响应之前,必须首先使用javaScript对象创建一个XMLHttpRquest对象。
var xmlhttp;
function getXMLHttpRequest(){
if(window.ActiveXObject){
xmlhttp:new ActiveXObject("Microsoft.XMLHTTP
- jquery
wuai
jquery
以下防止文档在完全加载之前运行Jquery代码,否则会出现试图隐藏一个不存在的元素、获得未完全加载的图像的大小 等等
$(document).ready(function(){
jquery代码;
});
<script type="text/javascript" src="c:/scripts/jquery-1.4.2.min.js&quo