解读物理地址、虚拟地址关系

一直对物理地址,虚拟地址的概念比较含糊,今天在网上找了一篇文章读过后有点开悟,并整理出一幅关系图来,不对地方请各位网友指正:

解读物理地址、虚拟地址关系_第1张图片

原文如下:

Windows 2000 使用基于分页机制的虚拟内存。每个进程有4GB的虚拟地址空间。基于分页机制,这4GB地址空间的一些部分被映射了物理内存,一些部分映射硬盘上的交换文 件,一些部分什么也没有映射。程序中使用的都是4GB地址空间中的虚拟地址。而访问物理内存,需要使用物理地址。

下面我们看看什么是物理地址,什么是虚拟地址。

物理地址 (physical address): 放在寻址总线上的地址。放在寻址总线上,如果是读,电路根据这个地址每位的值就将相应地址的物理内存中的数据放到数据总线中传输。如果是写,电路根据这个 地址每位的值就将相应地址的物理内存中放入数据总线上的内容。物理内存是以字节(8位)为单位编址的。

虚拟地址 (virtual address): 4G虚拟地址空间中的地址,程序中使用的都是虚拟地址。

如果CPU寄存器中的分页标志位被设置,那么执行内存操作的机器指令时,CPU会自动根据页目录 和页表中的信息,把虚拟地址转换成物理地址,完成该指令。比如 mov eax,004227b8h ,这是把地址004227b8h处的值赋给寄存器的汇编代码,004227b8这个地址就是虚拟址。CPU在执行这行代码时,发现寄存器中的分页标志位已 经被设定,就自动完成虚拟地址到物理地址的转换,使用物理地址取出值,完成指令。对于Intel CPU 来说,分页标志位是寄存器CR0的第31位,为1表示使用分页,为0表示不使用分页。对于初始化之后的 Win2k 我们观察 CR0 ,发现第31位为1。表明Win2k是使用分页的。

使用了分页机制之后,4G的地址空间被分成了固定大小的页,每一页或者被映射到物理内存,或者被 映射到硬盘上的交换文件中,或者没有映射任何东西。对于一般程序来说,4G的地址空间,只有一小部分映射了物理内存,大片大片的部分是没有映射任何东西。 物理内存也被分页,来映射地址空间。对于32bit的Win2k,页的大小是4K字节。CPU用来把虚拟地址转换成物理地址的信息存放在叫做页目录和页表 的结构里。

物理内存分页,一个物理页的大小为4K字节,第0个物理页从物理地址 0×00000000 处开始。由于页的大小为4KB,就是0×1000字节,所以第1页从物理地址 0×00001000 处开始。第2页从物理地址 0×00002000 处开始。可以看到由于页的大小是4KB,所以只需要32bit的地址中高20bit来寻址物理页。

页表,一个页表的大小为4K字节,放在一个物理页中。由1024个4字节的页表项组成。页表项的 大小为4个字节(32bit),所以一个页表中有1024个页表项。页表中的每一项的内容(每项4个字节,32bit)高20bit用来放一个物理页的物 理地址,低12bit放着一些标志。

页目录,一个页目录大小为4K字节,放在一个物理页中。由1024个4字节的页目录项组成。页目 录项的大小为4个字节(32bit),所以一个页目录中有1024个页目录项。页目录中的每一项的内容(每项4个字节)高20bit用来放一个页表(页表 放在一个物理页中)的物理地址,低12bit放着一些标志。

对于x86系统,页目录的物理地址放在CPU的CR3寄存器中。

CPU把虚拟地址转换成物理地址:
一个虚拟地址,大小4个字节(32bit),包含着找到物理地址的信息,分为3个部分:第22位到第31位这10位(最高10位)是页目录中的索引,第 12位到第21位这10位是页表中的索引,第0位到第11位这12位(低12位)是页内偏移。对于一个要转换成物理地址的虚拟地址,CPU首先根据CR3 中的值,找到页目录所在的物理页。然后根据虚拟地址的第22位到第31位这10位(最高的10bit)的值作为索引,找到相应的页目录项 (PDE,page directory entry),页目录项中有这个虚拟地址所对应页表的物理地址。有了页表的物理地址,根据虚拟地址的第12位到第21位这10位的值作为索引,找到该页表 中相应的页表项(PTE,page table entry),页表项中就有这个虚拟地址所对应物理页的物理地址。最后用虚拟地址的最低12位,也就是页内偏移,加上这个物理页的物理地址,就得到了该虚 拟地址所对应的物理地址。

一个页目录有1024项,虚拟地址最高的10bit刚好可以索引1024项(2的10次方等于 1024)。一个页表也有1024项,虚拟地址中间部分的10bit,刚好索引1024项。虚拟地址最低的12bit(2的12次方等于4096),作为 页内偏移,刚好可以索引4KB,也就是一个物理页中的每个字节。

一个虚拟地址转换成物理地址的计算过程就是,处理器通过CR3找到当前页目录所在物理页,取虚拟 地址的高10bit,然后把这10bit右移2bit(因为每个页目录项4个字节长,右移2bit相当于乘4)得到在该页中的地址,取出该地址处 PDE(4个字节),就找到了该虚拟地址对应页表所在物理页,取虚拟地址第12位到第21位这10位,然后把这10bit右移2bit(因为每个页表项4 个字节长,右移2bit相当于乘4)得到在该页中的地址,取出该地址处的PTE(4个字节),就找到了该虚拟地址对应物理页的地址,最后加上12bit的 页内偏移得到了物理地址。

32bit的一个指针,可以寻址范围0×00000000-0xFFFFFFFF,4GB大小。 也就是说一个32bit的指针可以寻址整个4GB地址空间的每一个字节。一个页表项负责4K的地址空间和物理内存的映射,一个页表1024项,也就是负责 1024*4k=4M的地址空间的映射。一个页目录项,对应一个页表。一个页目录有1024项,也就对应着1024个页表,每个页表负责4M地址空间的映 射。1024个页表负责1024*4M=4G的地址空间映射。一个进程有一个页目录。所以以页为单位,页目录和页表可以保证4G的地址空间中的每页和物理 内存的映射。

每个进程都有自己的4G地址空间,从 0×00000000-0xFFFFFFFF 。通过每个进程自己的一套页目录和页表来实现。由于每个进程有自己的页目录和页表,所以每个进程的地址空间映射的物理内存是不一样的。两个进程的同一个虚 拟地址处(如果都有物理内存映射)的值一般是不同的,因为他们往往对应不同的物理页。

4G地址空间中低2G,0×00000000-0×7FFFFFFF 是用户地址空间,4G地址空间中高2G,
0×80000000-0xFFFFFFFF 是系统地址空间。访问系统地址空间需要程序有ring0的权限。

========================================================

4G地址空间的分类及其作用:
0x00000000 至 0x0000FFFF : 是为NULL指针分配而保留的,如果访
问该区域内存将导致"非法访问"错误;

0x00010000 至 0x7FFEFFFF : 是用户进程空间exe文件与dll文件的会
被加载到这部分地址空间,其中exe文
件的起始地为:0x00400000。如果访问
该区域中没有代码装入的地址将导致
"非法访问"错误;

0x7FFF0000 至 0x7FFFFFFF : 是保留区域,对此区域的任何访问都将
导致"非法访问"错误;

0x80000000 至 0xFFFFFFFF : 仅供操作系统使用,用于加载设备驱动
程序和其它核心级代码。从用户级应用
程序(ring 3)访问此区域将导致"非法访问"错误;

补充:

解读物理地址、虚拟地址关系_第2张图片

每 个进程都有一个CR3寄存器,它的高20位地址保存的是页目录的物理地址,为什么是20位呢?是因为内存的实模式是以页为基本单位分配的,每页是 4kb=4096=12位,所以内存是以12位对齐的,所以最后的12位是没有必要保存的(这12位预留给高级处理器使用)。进程根据CR3值找到自己的 页目录在实际内存中的位置,再根据要映射的地址的高10位检索页目录中的页表地址(1024个,每个地址4byte,所以页目录总共占用内存4KB),找 到了页表的基地址(每个页表有1024个地址,每个地址4byte,一共有1024个页表,所以所有页表一共占用1024*1024*4=4M内存),再 根据要映射地址的第二个10位在此页表中索引得到一个地址,最后再用这个地址加上要映射地址的低12位,便得到了实际的内存地址。

你可能感兴趣的:(解读物理地址、虚拟地址关系)