图像处理中的数学原理详解18——内积与外积

欢迎关注我的博客专栏“图像处理中的数学原理详解”

全文目录请见 图像处理中的数学原理详解(总纲)

http://blog.csdn.net/baimafujinji/article/details/48467225

图像处理中的数学原理详解(已发布的部分链接整理)

http://blog.csdn.net/baimafujinji/article/details/48751037


1.3.2 内积与外积


图像处理中的数学原理详解18——内积与外积_第1张图片

因为cos(π/2)=0。当然,这也是众多教科书上介绍向量内积最开始时常常用到的一种定义方式。但必须明确,这种表示方式仅仅是一种非常狭隘的定义。如果从这个定义出发来介绍向量内积,其实是本末倒置的。因为对于高维向量而言,夹角的意义是不明确的。例如,在三维坐标空间中,再引入一维时间坐标,形成一个四维空间,那么时间向量与空间向量的夹角该如何解释呢?所以读者务必明确,首先应该是给出如本小节最开始时给出的内积定义,然后才能由此给出二维或三维空间下的夹角定义。在此基础上,我们来证明余弦定律。


图像处理中的数学原理详解18——内积与外积_第2张图片

若根据a·b = |a||b|cosθ这个定义,因为0<=cosθ<=1,显然柯西-施瓦茨不等式是成立的。但是这样的证明方式同样又犯了本末倒置的错误。柯西-施瓦茨不等式并没有限定向量的维度,换言之它对于任意维度的向量都是成立的,这时夹角的定义是不明确的。正确的思路同样应该从本小节最开始的定义出发来证明柯西-施瓦茨不等式,因为存在这样一个不等式关系,然后我们才会想到内积与向量模的乘积之间存在一个介于0和1之间的系数,然后我们才用cosθ来表述这个系数,于是才会得到b = |a||b|cosθ这个表达式。下面就来证明柯西-施瓦茨不等式。


证明:

图像处理中的数学原理详解18——内积与外积_第3张图片

与内积类似,向量a,b的外积也可以狭义地定义为

图像处理中的数学原理详解18——内积与外积_第4张图片


我整理了图像处理中可能用到的一些数学基础,将其分成了6个章节(全文目录见上方链接)。如果你对其中的某一小节特别感兴趣,但是它还没有被发布,你可以在博客下方留言,我会据此调整发布顺序。但是请务必精确地指出章节标号(例如1.3.7 曲面积分),而不是笼统地使用类似“第5章”或者“小波部分”这样的表述。因为等我把全部整个章节发布完,可能三个月的时间都已经过去了。

另外,有读者提出非常希望学习第三章之内容(主要是因为偏微分方程在图像处理中的应用被我辑录在了这部分内容里)。为此,我特别整理出第三章的文稿分享给读者。有需要的读者可以在博客下方留言告知我你的邮箱地址,每满10条邮箱地址,我会统一发送一次完整的第三章文稿。鉴于CSDN的私信功能近来不是很稳定,因此请不要发私信给我,你有可能不会收到任何答复。



你可能感兴趣的:(数学,图像处理,外积,内积)