1.题目描述:点击打开链接
2.解题思路:本题利用树状dp解决,不过其实也可以理解为用贪心法解决的。设d(u)表示u给上级发信最少需要的工人个数,假设u有k个子结点,那么根据题意,至少需要c=(k*T-1)/100+1个直属下属发信才行。而每个直属下属的工人数是di,那么这时只需要把di由小到大排序,然后把前c个相加就是d(u)了。最终的答案是d(0)。由于需要排序,因此总的时间复杂度是O(N*logN)。最后附上一篇带有大量宏定义的参考代码,真心给跪,第一次见这么多的宏定义,Orz。
3.代码:
#define _CRT_SECURE_NO_WARNINGS #include<iostream> #include<algorithm> #include<string> #include<sstream> #include<set> #include<vector> #include<stack> #include<map> #include<queue> #include<deque> #include<cstdlib> #include<cstdio> #include<cstring> #include<cmath> #include<ctime> #include<functional> using namespace std; const int maxn = 1e5 + 10; vector<int>sons[maxn];//存放i的所有直属下属 int n, T; int dp(int u) { if (sons[u].empty())return 1;//工人 int k = sons[u].size(); vector<int>d; //存放u的直属下属的工人数 for (int i = 0; i < k; i++) d.push_back(dp(sons[u][i])); sort(d.begin(), d.end()); int c = (k*T - 1) / 100 + 1; int ans = 0; for (int i = 0; i < c; i++) ans += d[i]; return ans; } int main() { //freopen("test.txt", "r", stdin); while (scanf("%d%d", &n, &T) == 2 && n&&T) { memset(sons, 0, sizeof(sons)); int x; for (int i = 1; i <= n; i++) { scanf("%d", &x); sons[x].push_back(i); } int ans; ans = dp(0); printf("%d\n", ans); } return 0; }
参考代码:
#include <cstdio> #include <iostream> #include <cstring> #include <string> #include <algorithm> #include <map> #include <set> #include <list> #include <stack> #include <vector> #include <queue> #include <cmath> #include <cstdlib> using namespace std; #define PB push_back #define SIZE(x) (int)x.size() #define clr(x,y) memset(x,y,sizeof(x)) #define RS(n) scanf ("%s", n) #define RD(n) scanf ("%d", &n) #define RF(n) scanf ("%lf", &n) #define ALL(t) (t).begin(),(t).end() #define FOR(i,n,m,step) for (int i = n; i <= m; i += step) #define ROF(i,n,m,step) for (int i = n; i >= m; i -= step) #define IT iterator typedef long long ll; typedef unsigned int uint; typedef unsigned long long ull; typedef vector<int> vint; typedef vector<long long> vll; typedef vector<string> vstring; typedef pair<int, int> PII; /*****************************************************************/ const int maxn = 100000 + 5; vint sons[maxn]; int T; int dp(int u) { if (sons[u].empty()) return 1; int k = sons[u].size(); vint d; FOR(i,0,k-1,1) d.PB(dp(sons[u][i])); sort(d.begin(),d.end()); int c = (k * T - 1) / 100 + 1; int ans = 0; FOR(i,0,c - 1,1) ans += d[i]; return ans; } int main() { int n; while (cin>>n>>T,n) { FOR(i,0,n,1) sons[i].clear(); FOR(i,1,n,1) { int tmp; RD(tmp); sons[tmp].PB(i); } cout<<dp(0)<<endl; } }