- Python从0到100(七十六):计算机视觉-直方图和自适应直方图均衡化
是Dream呀
python计算机视觉开发语言
前言:零基础学Python:Python从0到100最新最全教程。想做这件事情很久了,这次我更新了自己所写过的所有博客,汇集成了Python从0到100,共一百节课,帮助大家一个月时间里从零基础到学习Python基础语法、Python爬虫、Web开发、计算机视觉、机器学习、神经网络以及人工智能相关知识,成为学习学习和学业的先行者!欢迎大家订阅专栏:零基础学Python:Python从0到100最新
- 《 YOLOv5、YOLOv8、YOLO11训练的关键文件:data.yaml文件编写全解》
空云风语
人工智能YOLO机器视觉目标跟踪人工智能计算机视觉YOLO
走进YOLOv5、YOLOv8、YOLO11的data.yaml在计算机视觉领域的广袤星空中,目标检测无疑是一颗璀璨的明星,它广泛应用于自动驾驶、智能安防、工业检测、医疗影像分析等众多关键领域,发挥着不可或缺的作用。而YOLO系列算法,更是以其独特的“一次看全(YouOnlyLookOnce)”理念和卓越的性能,在目标检测领域中独树一帜,成为了众多研究者和开发者的首选工具。从最初的YOLOv1横空
- 机器学习之线性代数
珠峰日记
AI理论与实践机器学习线性代数人工智能
文章目录一、引言:线性代数为何是AI的基石二、向量:AI世界的基本构建块(一)向量的定义(二)向量基础操作(三)重要概念三、矩阵:AI数据的强大容器(一)矩阵的定义(二)矩阵运算(三)矩阵特性(四)矩阵分解(五)Python示例(使用NumPy库)四、线性代数在AI中的应用(一)数据表示(二)降维:PCA(三)线性回归(四)计算机视觉(五)自然语言处理一、引言:线性代数为何是AI的基石在人工智能领
- 深度解析:DETR的多尺度特征融合
AI天才研究院
AI大模型企业级应用开发实战DeepSeekR1&大数据AI人工智能大模型计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
"深度解析:DETR的多尺度特征融合"作者:禅与计算机程序设计艺术1.背景介绍1.1目标检测的挑战与传统方法的局限性目标检测是计算机视觉领域中的一个基本任务,其目标是识别图像或视频中所有感兴趣的目标,并确定它们的位置和类别。传统的目标检测方法,如FasterR-CNN和YOLO,通常依赖于预定义的锚框或候选区域来生成目标proposals。然而,这些方法存在一些固有的局限性:人工先验知识:锚框的设
- 目标检测项目
sho_re
神经网络人工智能pytorch目标检测
·识别图片中有哪些物体并且找到物体的存在位置多任务:位置+类别目标种类与数量繁多的问题目标尺度不均的问题遮挡、噪声等外部环境干扰VOC数据集:PASCALVOC挑战赛(ThePASCALVisualObjectClasses)是一个世界级的计算机视觉挑战赛。4大类,20小类VOC2007:9963图片/24640目标VOC2012:23080图片/54900目标·COCO数据集:起源于微软2014
- 点云语义分割:PointNet++在S3DIS数据集上的训练
完美代码
3dneo4j点云
点云语义分割:PointNet++在S3DIS数据集上的训练点云语义分割是计算机视觉领域的一个重要任务,旨在将点云数据中的每个点分配给其对应的语义类别。PointNet++是一种流行的深度学习方法,可用于处理点云数据,并在各种任务中取得了良好的性能。在本文中,我们将探讨如何使用PointNet++模型在S3DIS数据集上进行训练,并提供相应的源代码。数据集介绍S3DIS数据集是一个常用的用于室内场
- 基于YOLOv5的烟雾检测系统:从数据集准备到UI界面实现
深度学习&目标检测实战项目
YOLOui分类数据挖掘目标跟踪
1.引言烟雾是火灾发生的一个重要早期信号。烟雾检测能够在火灾初期及时识别并报警,为火灾的扑灭争取宝贵的时间。因此,烟雾检测的研究一直是计算机视觉领域中的一个热点问题。近年来,随着深度学习技术的发展,目标检测算法被广泛应用于烟雾检测,尤其是基于YOLOv5的目标检测模型,由于其较高的精度和较低的计算开销,已经成为许多实时检测系统的首选模型。在这篇博客中,我们将介绍如何使用YOLOv5模型进行烟雾检测
- 计算机视觉|3D 点云处理黑科技:PointNet++ 原理剖析与实战指南
紫雾凌寒
AI炼金厂#深度学习#计算机视觉深度学习计算机视觉3dcnnPointNet++3d云3d云数据
一、引言在当今数字化与智能化快速发展的时代,3D点云处理技术在多个前沿领域中发挥着重要作用。特别是在自动驾驶和机器人视觉等领域,这项技术已成为实现智能化的关键支撑。以自动驾驶为例,车辆需要实时感知周围复杂的环境信息,包括行人、车辆、交通标志和路况等。3D点云数据能够提供高精度的三维空间信息,使自动驾驶车辆更准确地识别和定位周围物体,从而做出安全、合理的行驶决策。在城市街道上,自动驾驶车辆通过3D点
- 【基于手势识别的音量控制系统】
合肥玉安人工智能工作室
PythonOpenCVpythonmediapipe手势手势控制音量
基于手势识别的音量控制系统github项目效果这是一个结合了计算机视觉和系统控制的实用项目,通过识别手势来实现音量的无接触控制,同时考虑到了用户隐私,加入了实时人脸遮罩功能。核心功能实现1.手势识别与音量映射系统使用MediaPipe框架进行手部关键点检测,通过计算大拇指和食指之间的距离来控制音量:def_process_landmarks(self,hand_landmarks):#获取手指关键
- 你好,我是冴羽,我写了一套《前端大佬成长之路》
你好,我是冴羽。这么正式的开头说明我有了一个大动作。是的,我创建了自己的知识星球:“冴羽·前端大佬成长之路”。重点一:新的一年,我会在知识星球更新一套“前端大佬成长之路”的课程。包含目标规划篇、学习方法篇、前端学习篇、个人管理篇、职场发展篇、面试技巧篇、健康养生篇共7大篇章、40节文章。总结了我近十年的工作生活经验,让大家少走一些弯路,节省一些时间。重点二:但是帮助你全面成长,一套课程是不够的,必
- 利用CUDA与OpenCV实现高效图像处理:全面指南
快撑死的鱼
C++(C语言)算法大揭秘opencv图像处理人工智能
利用CUDA与OpenCV实现高效图像处理:全面指南前言在现代计算机视觉领域,图像处理的需求日益增加。无论是自动驾驶、安防监控,还是医疗影像分析,图像处理技术都扮演着至关重要的角色。然而,图像处理的计算量非常大,往往需要强大的计算能力来保证实时性和高效性。幸运的是,CUDA和OpenCV为我们提供了一种高效的图像处理解决方案。本篇文章将详细介绍如何结合CUDA与OpenCV,利用GPU的强大计算能
- 【无标题】
东东就是我
opencv计算机视觉人工智能
1.计算机视觉与图像处理计算机视觉技术涵盖从图像预处理到目标检测的全流程,是工业视觉系统的核心部分。知识点扩展OpenCV基础cv2.imread()、cv2.imshow()、cv2.imwrite()进行基本图像读取、显示、保存cv2.cvtColor()进行颜色空间转换(RGB↔GRAY,RGB↔HSV)cv2.resize()进行图像缩放cv2.flip()进行图像翻转(水平/垂直)imp
- 深度学习在SSVEP信号分类中的应用分析
自由的晚风
深度学习分类人工智能
目录前言1.SSVEP信号分类的处理流程2.模型输入和数据预处理3.模型结构设计3.1卷积神经网络(CNN)3.2长短期记忆网络(LSTM)4.训练方法与激活函数5.性能评估与挑战6.未来方向前言随着脑机接口(BCI)技术的发展,SSVEP(稳态视觉诱发电位)因其高信息传输速率和短训练时间而成为最受欢迎的BCI范式之一。近年来,深度学习方法在SSVEP信号分类中取得了显著的成果。本文通过对31个深
- PSPNet在图像超分辨率中的应用
AI天才研究院
AI大模型企业级应用开发实战AI大模型应用入门实战与进阶DeepSeekR1&大数据AI人工智能大模型计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
PSPNet在图像超分辨率中的应用1.背景介绍图像超分辨率(ImageSuper-Resolution,ISR)是计算机视觉领域的一个重要研究方向,旨在从低分辨率图像中重建高分辨率图像。传统的ISR方法主要基于插值算法,如双线性插值、双三次插值等,但这些方法往往无法恢复图像的高频细节信息。近年来,随着深度学习的发展,基于卷积神经网络(ConvolutionalNeuralNetwork,CNN)的
- 多宠识别:基于计算机视觉的智能宠物管理系统架构解析
深圳市快瞳科技有限公司
计算机视觉宠物系统架构
一、行业痛点与技术方案演进在多宠家庭场景中,传统方案面临三大技术瓶颈:1.生物特征混淆:同品种/毛色宠物识别准确率低于65%2.动态场景适应:进食/奔跑状态下的误检率达30%+3.数据孤岛问题:离线设备无法实现持续学习优化快瞳科技采用**双模态视觉融合架构**,结合轻量化YOLOv7-Tiny模型与CLIP多模态大模型,实现:-98.7%的跨品种宠物识别准确率(CVPR2024最新测试数据)-单次
- Training-free Neural Architecture Searchthrough Variance of Knowledge of Deep Network Weights(预览版本)
境心镜
免训练深度学习人工智能NAS
代码位置摘要深度学习彻底改变了计算机视觉,但它使用深度网络架构取得了巨大的成功,而这些架构大多是手工制作的,因此可能不是最理想的。神经架构搜索(NAS)旨在通过遵循明确定义的优化范式来弥补这一差距,该范式系统地寻找最佳架构,给定客观标准,例如最大分类准确度。然而,NAS的主要限制是其天文数字般的计算成本,因为它通常需要从头开始训练每个候选网络架构。在本文中,我们旨在通过基于Fisher信息提出一种
- 支持向量机 SVM 简要介绍
_夜空的繁星_
机器学习svm支持向量机拉格朗日对偶机器学习
那些我从来没有理解过的概念(1)下面是我在学习过程中遇到的对我很难理解的概念和我抄下来的笔记主要资料来源:《统计学习方法》,维基百科拉格朗日对偶问题是什么假设f(x),ci(x),hj(x)是定义在Rn上的连续可微函数,考虑以下最优化问题:$$\min_{x\inR^n}{f(x)}\c_i(x)\leq0,i=1,2,\dots,k\h_j(x)=0,j=1,2,\dots,l$$是一个凸优化问
- 构建一个完整的视觉Transformer(ViT)图像分类模型 VIT (vision transformer)图像分类
Jackie_AI
transformer分类深度学习
构建一个完整的视觉Transformer(ViT)图像分类模型VIT(visiontransformer)图像分类根据提供的截图内容,我们可以看到一个名为VitNet的视觉Transformer(VisionTransformer,简称ViT)网络架构的部分代码。下面我将提供完整的VitNet类以及相关的辅助函数和训练流程示例代码。计算机视觉、图像处理、毕业辅导、作业帮助、代码获取,远程协助,代码
- 【人工智能基础】生成模型:让数据“无中生有”的神奇魔法
roman_日积跬步-终至千里
#人工智能基础知识人工智能
文章目录一、生成模型的发展脉络二、生成模型的基本原理三、主要生成模型及其逻辑1、生成对抗网络(GAN)2、变分自编码器(VAE)3、扩散模型(DPM)4、基于能量的模型(EBM)5、正规化流(NF)四、生成模型对比分析五、生成模型的应用拓展一、生成模型的发展脉络在深度学习尚未兴起的时期,计算机视觉领域的传统图像生成算法主要依赖纹理合成和纹理映射等技术。这些算法基于手工设计的特征进行图像构建,然而,
- 2024年最新PyTorch深度学习项目实战100例数据集_python 深度学习项目演练
2401_84585440
程序员深度学习pythonpytorch
前言最近很多订阅了《PyTorch深度学习项目实战100例》的用户私信咨询有些数据集下载不了以及一些文章中没有给出数据集链接,为了解决这个问题,专门开设了本篇文章,提供数据集下载链接,打包100例的所有数据集。本专栏适用人群:深度学习初学者,刚刚接触PyTorch的用户群体,专栏将具体讲解如何快速搭建深度学习模型用自己的数据集实现深度学习小项目,快速让新手小白能够对基于深度学习方法有个基本的框架认
- Imagen原理与代码实例讲解
AI天才研究院
计算DeepSeekR1&大数据AI人工智能大模型计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
Imagen原理与代码实例讲解1.背景介绍在人工智能领域中,图像生成一直是一个具有挑战性的任务。传统的计算机视觉模型通常专注于理解和分析现有图像,而生成全新的高质量图像则需要更高级的技术。随着深度学习技术的不断发展,生成式对抗网络(GenerativeAdversarialNetworks,GAN)等新型模型逐渐展现出了令人惊叹的图像生成能力。谷歌的Imagen就是一种基于大型视觉语言模型的全新图
- PyTorch:Python深度学习框架使用详解
零 度°
pythonpython深度学习pytorch
PyTorch是一个开源的机器学习库,广泛用于计算机视觉和自然语言处理领域。它由Facebook的AI研究团队开发,因其动态计算图、易用性以及与Python的紧密集成而受到开发者的青睐。PyTorch的主要特点动态计算图:PyTorch的计算图在运行时构建,使得模型的修改和调试更加灵活。自动微分:自动计算梯度,简化了机器学习模型的训练过程。丰富的API:提供了丰富的神经网络层、函数和损失函数。跨平
- 大规模语言模型构建流程
人工智能技术笔记
语言模型人工智能自然语言处理
大规模语言模型1.大语言模型大规模语言模型(LargeLanguageModels,LLM),也称大语言模型,是一种由包含数百亿以上参数的深度神经网络构建的语言模型,通常使用自监督学习方法通过大量无标注文本进行训练。2.预训练语言模型受到计算机视觉领域采用ImageNet对模型进行一次预训练,使得模型可以通过海量图像充分学习如何提取特征,然后再根据任务目标进行模型精调的预训练范式影响,自然语言处理
- 新一代 AI 软件Manus 将重新将AI市场大洗牌
CircuitWizard
人工智能
Manus是一家专注于手部追踪、虚拟现实(VR)和增强现实(AR)技术的公司,其新一代AI软件结合了先进的机器学习和计算机视觉技术,致力于提升人机交互的自然性和效率。以下是关于Manus新一代AI软件的详细介绍及其核心功能:1.核心技术与创新Manus的AI软件基于以下技术突破:高精度手部追踪:通过深度学习算法和摄像头/传感器数据,实时捕捉手部骨骼、关节和肌肉的细微动作,精度可达亚毫米级,支持复杂
- 【自然语言处理-NLP】情感分析与主题建模
云博士的AI课堂
深度学习哈佛博后带你玩转机器学习自然语言处理人工智能情感分析主题建模深度学习机器学习NLP
以下内容详细剖析了NLP中情感分析(SentimentAnalysis)和主题建模(TopicModeling)的技术与方法,分别展示如何从文本中提取情感倾向和潜在主题,并提供示例代码和讲解,可在Python环境下直接运行。目录情感分析(SentimentAnalysis)1.1概念与方法概览1.2传统机器学习方法1.3深度学习与预训练模型1.4代码示例:基于机器学习的情感分类主题建模(Topic
- 2020年精排模型调研
Marcus-Bao
机器不学习人工智能机器学习大数据算法
❝本文经作者同意转载自:https://zhuanlan.zhihu.com/p/335781101作者:Ruhjkg编辑:MarcusBao谢绝任何形式的二次转载!❞2020年精排模型调研前言最近由于工作需要调研了一下2020年关于精排模型的进展。在广告推荐领域的CTR预估问题上,早期以LR+人工特征工程为主的机器学习方法,但由于人工组合特征工程成本较高,不同任务难以复用。后面FM因子分解机提出
- 在 PiscTrace 上使用 YOLO 进行预测与 MiDaS 景深补偿:体验纯视觉自动驾驶的数据分析
那雨倾城
PiscTrace人工智能计算机视觉图像处理自动驾驶YOLO视觉检测
随着自动驾驶技术的不断发展,视觉感知系统逐渐成为车辆感知的核心组件。PiscTrace作为一款支持高效视图处理的桌面应用,集成了先进的计算机视觉工具,如YOLO目标检测模型和MiDaS景深估计模型,能够为纯视觉自动驾驶的实现提供强大的支持。通过这两个模型的结合,PiscTrace可以提供高精度的目标识别与环境感知功能,帮助用户进行实时的驾驶数据分析,为决策系统提供宝贵的数据支持。本文将详细介绍如何
- Verilog学习方法—基础入门篇(一)
博览鸿蒙
FPGAfpga开发
前言:在FPGA开发中,VerilogHDL(硬件描述语言)是工程师必须掌握的一项基础技能。它不仅用于描述数字电路,还广泛应用于FPGA的逻辑设计与验证。对于初学者来说,掌握Verilog的核心概念和基本语法,是深入FPGA开发的第一步。本篇文章将从Verilog基础入门的角度,帮助你快速建立学习框架,逐步掌握Verilog的使用方法。1.了解Verilog的基本概念1.1什么是Verilog?V
- 专业 英语
程序员爱德华
英语专业英语
文章目录一、计算机1.计算机基础(1)计算机组成原理(2)计算机网络(3)数据库(4)编译原理(5)离散数学2.软件开发(1)编程词汇(2)开发术语(3)Linux(4)软件3.就业领域(1)职场(2)芯片(3)自动驾驶(4)嵌入式硬件4.深度学习(1)论文(2)深度学习DL(3)计算机视觉CV(4)自然语言处理NLP(5)推荐系统(6)计算机图形学二、数学三、机械、材料四、医药五、英美计量单位一
- cv君独家视角 | AI内幕系列十四:【手机、相机防抖大揭秘】数字防抖、鸡头防抖、光学防抖、AI防抖等(附源码+长期更新)
cv君
原创项目级实战项目cv君独家视角AI内幕系列深度学习与计算机视觉精品人工智能aiisp科技python
目录摘要主要防抖技术手机防抖对比某拇指相机技术分析:1.基础介绍2.功能需求2.1功能背景2.2技术背景与技术选型2.3技术方案2.4可行性落地链路2.5竞品调研与市场分析2.6防抖主客观评价源码实现运动防抖步骤:代码实现性能优化与改进代码改进进一步改进与应用深度学习方法示例实时处理与应用示例运动摄影无人机航拍摄像头防抖设备计算资源需求复杂场景处理参数调整和优化实时处理需求误差累积并行和分布式处理
- java杨辉三角
3213213333332132
java基础
package com.algorithm;
/**
* @Description 杨辉三角
* @author FuJianyong
* 2015-1-22上午10:10:59
*/
public class YangHui {
public static void main(String[] args) {
//初始化二维数组长度
int[][] y
- 《大话重构》之大布局的辛酸历史
白糖_
重构
《大话重构》中提到“大布局你伤不起”,如果企图重构一个陈旧的大型系统是有非常大的风险,重构不是想象中那么简单。我目前所在公司正好对产品做了一次“大布局重构”,下面我就分享这个“大布局”项目经验给大家。
背景
公司专注于企业级管理产品软件,企业有大中小之分,在2000年初公司用JSP/Servlet开发了一套针对中
- 电驴链接在线视频播放源码
dubinwei
源码电驴播放器视频ed2k
本项目是个搜索电驴(ed2k)链接的应用,借助于磁力视频播放器(官网:
http://loveandroid.duapp.com/ 开放平台),可以实现在线播放视频,也可以用迅雷或者其他下载工具下载。
项目源码:
http://git.oschina.net/svo/Emule,动态更新。也可从附件中下载。
项目源码依赖于两个库项目,库项目一链接:
http://git.oschina.
- Javascript中函数的toString()方法
周凡杨
JavaScriptjstoStringfunctionobject
简述
The toString() method returns a string representing the source code of the function.
简译之,Javascript的toString()方法返回一个代表函数源代码的字符串。
句法
function.
- struts处理自定义异常
g21121
struts
很多时候我们会用到自定义异常来表示特定的错误情况,自定义异常比较简单,只要分清是运行时异常还是非运行时异常即可,运行时异常不需要捕获,继承自RuntimeException,是由容器自己抛出,例如空指针异常。
非运行时异常继承自Exception,在抛出后需要捕获,例如文件未找到异常。
此处我们用的是非运行时异常,首先定义一个异常LoginException:
/**
* 类描述:登录相
- Linux中find常见用法示例
510888780
linux
Linux中find常见用法示例
·find path -option [ -print ] [ -exec -ok command ] {} \;
find命令的参数;
- SpringMVC的各种参数绑定方式
Harry642
springMVC绑定表单
1. 基本数据类型(以int为例,其他类似):
Controller代码:
@RequestMapping("saysth.do")
public void test(int count) {
}
表单代码:
<form action="saysth.do" method="post&q
- Java 获取Oracle ROWID
aijuans
javaoracle
A ROWID is an identification tag unique for each row of an Oracle Database table. The ROWID can be thought of as a virtual column, containing the ID for each row.
The oracle.sql.ROWID class i
- java获取方法的参数名
antlove
javajdkparametermethodreflect
reflect.ClassInformationUtil.java
package reflect;
import javassist.ClassPool;
import javassist.CtClass;
import javassist.CtMethod;
import javassist.Modifier;
import javassist.bytecode.CodeAtt
- JAVA正则表达式匹配 查找 替换 提取操作
百合不是茶
java正则表达式替换提取查找
正则表达式的查找;主要是用到String类中的split();
String str;
str.split();方法中传入按照什么规则截取,返回一个String数组
常见的截取规则:
str.split("\\.")按照.来截取
str.
- Java中equals()与hashCode()方法详解
bijian1013
javasetequals()hashCode()
一.equals()方法详解
equals()方法在object类中定义如下:
public boolean equals(Object obj) {
return (this == obj);
}
很明显是对两个对象的地址值进行的比较(即比较引用是否相同)。但是我们知道,String 、Math、I
- 精通Oracle10编程SQL(4)使用SQL语句
bijian1013
oracle数据库plsql
--工资级别表
create table SALGRADE
(
GRADE NUMBER(10),
LOSAL NUMBER(10,2),
HISAL NUMBER(10,2)
)
insert into SALGRADE values(1,0,100);
insert into SALGRADE values(2,100,200);
inser
- 【Nginx二】Nginx作为静态文件HTTP服务器
bit1129
HTTP服务器
Nginx作为静态文件HTTP服务器
在本地系统中创建/data/www目录,存放html文件(包括index.html)
创建/data/images目录,存放imags图片
在主配置文件中添加http指令
http {
server {
listen 80;
server_name
- kafka获得最新partition offset
blackproof
kafkapartitionoffset最新
kafka获得partition下标,需要用到kafka的simpleconsumer
import java.util.ArrayList;
import java.util.Collections;
import java.util.Date;
import java.util.HashMap;
import java.util.List;
import java.
- centos 7安装docker两种方式
ronin47
第一种是采用yum 方式
yum install -y docker
 
- java-60-在O(1)时间删除链表结点
bylijinnan
java
public class DeleteNode_O1_Time {
/**
* Q 60 在O(1)时间删除链表结点
* 给定链表的头指针和一个结点指针(!!),在O(1)时间删除该结点
*
* Assume the list is:
* head->...->nodeToDelete->mNode->nNode->..
- nginx利用proxy_cache来缓存文件
cfyme
cache
user zhangy users;
worker_processes 10;
error_log /var/vlogs/nginx_error.log crit;
pid /var/vlogs/nginx.pid;
#Specifies the value for ma
- [JWFD开源工作流]JWFD嵌入式语法分析器负号的使用问题
comsci
嵌入式
假如我们需要用JWFD的语法分析模块定义一个带负号的方程式,直接在方程式之前添加负号是不正确的,而必须这样做:
string str01 = "a=3.14;b=2.71;c=0;c-((a*a)+(b*b))"
定义一个0整数c,然后用这个整数c去
- 如何集成支付宝官方文档
dai_lm
android
官方文档下载地址
https://b.alipay.com/order/productDetail.htm?productId=2012120700377310&tabId=4#ps-tabinfo-hash
集成的必要条件
1. 需要有自己的Server接收支付宝的消息
2. 需要先制作app,然后提交支付宝审核,通过后才能集成
调试的时候估计会真的扣款,请注意
- 应该在什么时候使用Hadoop
datamachine
hadoop
原帖地址:http://blog.chinaunix.net/uid-301743-id-3925358.html
存档,某些观点与我不谋而合,过度技术化不可取,且hadoop并非万能。
--------------------------------------------万能的分割线--------------------------------
有人问我,“你在大数据和Hado
- 在GridView中对于有外键的字段使用关联模型进行搜索和排序
dcj3sjt126com
yii
在GridView中使用关联模型进行搜索和排序
首先我们有两个模型它们直接有关联:
class Author extends CActiveRecord {
...
}
class Post extends CActiveRecord {
...
function relations() {
return array(
'
- 使用NSString 的格式化大全
dcj3sjt126com
Objective-C
格式定义The format specifiers supported by the NSString formatting methods and CFString formatting functions follow the IEEE printf specification; the specifiers are summarized in Table 1. Note that you c
- 使用activeX插件对象object滚动有重影
蕃薯耀
activeX插件滚动有重影
使用activeX插件对象object滚动有重影 <object style="width:0;" id="abc" classid="CLSID:D3E3970F-2927-9680-BBB4-5D0889909DF6" codebase="activex/OAX339.CAB#
- SpringMVC4零配置
hanqunfeng
springmvc4
基于Servlet3.0规范和SpringMVC4注解式配置方式,实现零xml配置,弄了个小demo,供交流讨论。
项目说明如下:
1.db.sql是项目中用到的表,数据库使用的是oracle11g
2.该项目使用mvn进行管理,私服为自搭建nexus,项目只用到一个第三方 jar,就是oracle的驱动;
3.默认项目为零配置启动,如果需要更改启动方式,请
- 《开源框架那点事儿16》:缓存相关代码的演变
j2eetop
开源框架
问题引入
上次我参与某个大型项目的优化工作,由于系统要求有比较高的TPS,因此就免不了要使用缓冲。
该项目中用的缓冲比较多,有MemCache,有Redis,有的还需要提供二级缓冲,也就是说应用服务器这层也可以设置一些缓冲。
当然去看相关实现代代码的时候,大致是下面的样子。
[java]
view plain
copy
print
?
public vo
- AngularJS浅析
kvhur
JavaScript
概念
AngularJS is a structural framework for dynamic web apps.
了解更多详情请见原文链接:http://www.gbtags.com/gb/share/5726.htm
Directive
扩展html,给html添加声明语句,以便实现自己的需求。对于页面中html元素以ng为前缀的属性名称,ng是angular的命名空间
- 架构师之jdk的bug排查(一)---------------split的点号陷阱
nannan408
split
1.前言.
jdk1.6的lang包的split方法是有bug的,它不能有效识别A.b.c这种类型,导致截取长度始终是0.而对于其他字符,则无此问题.不知道官方有没有修复这个bug.
2.代码
String[] paths = "object.object2.prop11".split("'");
System.ou
- 如何对10亿数据量级的mongoDB作高效的全表扫描
quentinXXZ
mongodb
本文链接:
http://quentinXXZ.iteye.com/blog/2149440
一、正常情况下,不应该有这种需求
首先,大家应该有个概念,标题中的这个问题,在大多情况下是一个伪命题,不应该被提出来。要知道,对于一般较大数据量的数据库,全表查询,这种操作一般情况下是不应该出现的,在做正常查询的时候,如果是范围查询,你至少应该要加上limit。
说一下,
- C语言算法之水仙花数
qiufeihu
c算法
/**
* 水仙花数
*/
#include <stdio.h>
#define N 10
int main()
{
int x,y,z;
for(x=1;x<=N;x++)
for(y=0;y<=N;y++)
for(z=0;z<=N;z++)
if(x*100+y*10+z == x*x*x
- JSP指令
wyzuomumu
jsp
jsp指令的一般语法格式: <%@ 指令名 属性 =”值 ” %>
常用的三种指令: page,include,taglib
page指令语法形式: <%@ page 属性 1=”值 1” 属性 2=”值 2”%>
include指令语法形式: <%@include file=”relative url”%> (jsp可以通过 include