1176: [Balkan2007]Mokia
Time Limit: 30 Sec Memory Limit: 162 MB
Submit: 1059 Solved: 432
[Submit][Status][Discuss]
Description
维护一个W*W的矩阵,初始值均为S.每次操作可以增加某格子的权值,或询问某子矩阵的总权值.修改操作数M<=160000,询问数Q<=10000,W<=2000000.
Input
第一行两个整数,S,W;其中S为矩阵初始值;W为矩阵大小
接下来每行为一下三种输入之一(不包含引号):
“1 x y a”
“2 x1 y1 x2 y2”
“3”
输入1:你需要把(x,y)(第x行第y列)的格子权值增加a
输入2:你需要求出以左上角为(x1,y1),右下角为(x2,y2)的矩阵内所有格子的权值和,并输出
输入3:表示输入结束
Output
对于每个输入2,输出一行,即输入2的答案
Sample Input
0 4
1 2 3 3
2 1 1 3 3
1 2 2 2
2 2 2 3 4
3
Sample Output
3
5
HINT
保证答案不会超过int范围
Source
cdq分治的模板题然而我现在才做这个题。。。
差分一下询问操作。对所有操作按y排序。
树状数组维护一下。然后就可以了。
自从看过了Tsinsen上的姿势分
我写代码都开始丧心病狂了
#include<iostream>
#include<cstdio>
#include<cstring>
#include<cmath>
#include<algorithm>
#define MAXN 200000
#define SIZE 2000010
#define lowbit(x) (x&(-x))
using namespace std;
int w;
int top,opt,L,R,l,r,delta,Top;
struct Query
{
int op;
int x,y,A;
int t,id;
bool operator <(const Query& a)const
{
if (x == a.x && y == a.y) return op < a.op;
if (x == a.x) return y < a.y;
return x < a.x;
}
}que[MAXN],newq[MAXN];
int ans[MAXN],c[SIZE];
inline void in(int &x)
{
x=0;char ch = getchar();
while (!(ch >= '0' && ch <= '9')) ch = getchar();
while (ch >= '0' && ch <= '9') x = x * 10 + ch - '0',ch = getchar();
}
inline void add(int i,int x)
{
while (i && i <= w) c[i] += x,i += lowbit(i);
}
inline int query(int i)
{
int ret = 0;
while (i) ret += c[i],i -= lowbit(i);
return ret;
}
inline void Solve(int l,int r)
{
int mid = (l + r) >> 1,tp1 = l,tp2 = mid + 1;
if (l == r) return;
for (int i = l;i <= r;i++)
{
if (que[i].t <= mid && que[i].op == 1) add(que[i].y,que[i].A);
if (que[i].t > mid && que[i].op == 2) ans[que[i].id] += query(que[i].y) * que[i].A;
}
for (int i = l;i <= r;i++)
if (que[i].t <= mid && que[i].op == 1) add(que[i].y,-que[i].A);
for (int i = l;i <= r;i++)
if (que[i].t <= mid) newq[tp1++] = que[i];
else newq[tp2++] = que[i];
memcpy(que+l,newq+l,sizeof(Query)*(r - l + 1));
Solve(l,mid);Solve(mid+1,r);
}
int main()
{
freopen("mokia.in","r",stdin);
freopen("mokia.out","w",stdout);
in(opt);in(w);
while (1)
{
in(opt);
if (opt == 3) break;
switch (opt)
{
case 1:
in(L);in(R);in(delta);
que[++top].op = opt;que[top].x = L;que[top].y = R;que[top].A = delta;que[top].t = top;
break;
case 2:
in(L);in(R);in(l);in(r);
que[++top].op = opt;que[top].x = L - 1;que[top].y = R - 1;que[top].t = top;que[top].A = 1;que[top].id = ++Top;
que[++top].op = opt;que[top].x = L - 1;que[top].y = r;que[top].t = top;que[top].A = -1;que[top].id = Top;
que[++top].op = opt;que[top].x = l;que[top].y = R - 1;que[top].t = top;que[top].A = -1;que[top].id = Top;
que[++top].op = opt;que[top].x = l;que[top].y = r;que[top].t = top;que[top].A = 1;que[top].id = Top;
break;
}
}
sort(que + 1,que + top + 1);
Solve(1,top);
for (int i = 1;i <= Top;i++) printf("%d\n",ans[i]);
}