题目大意:求最小圆覆盖
随机增量法裸题
注意多输出几位小数不然过不去= =
#include <cmath> #include <cstdio> #include <cstring> #include <iomanip> #include <iostream> #include <algorithm> #define M 100100 #define EPS 1e-7 using namespace std; struct Point{ double x,y; Point() {} Point(double _,double __): x(_),y(__) {} friend istream& operator >> (istream &_,Point &p) { scanf("%lf%lf",&p.x,&p.y); return _; } friend Point operator + (const Point &p1,const Point &p2) { return Point(p1.x+p2.x,p1.y+p2.y); } friend Point operator - (const Point &p1,const Point &p2) { return Point(p1.x-p2.x,p1.y-p2.y); } friend double operator * (const Point &p1,const Point &p2) { return p1.x*p2.y-p1.y*p2.x; } friend Point operator * (const Point &p,double rate) { return Point(p.x*rate,p.y*rate); } friend double Distance(const Point &p1,const Point &p2) { return sqrt( (p1.x-p2.x)*(p1.x-p2.x) + (p1.y-p2.y)*(p1.y-p2.y) ) ; } friend Point Rotate(const Point &p) { return Point(-p.y,p.x); } }points[M]; struct Line{ Point p,v; Line() {} Line(const Point &_,const Point &__): p(_),v(__) {} friend Point Get_Intersection(const Line &l1,const Line &l2) { Point u=l1.p-l2.p; double temp=(l2.v*u)/(l1.v*l2.v); return l1.p+l1.v*temp; } }; struct Circle{ Point o; double r; Circle() {} Circle(const Point &_,double __): o(_),r(__) {} bool In_Circle(const Point &p) { return Distance(p,o) < r + EPS ; } }ans; int n; int main() { int i,j,k; cin>>n; for(i=1;i<=n;i++) { cin>>points[i]; if(!ans.In_Circle(points[i])) { ans=Circle(points[i],0); for(j=1;j<i;j++) if(!ans.In_Circle(points[j])) { ans=Circle((points[i]+points[j])*0.5,Distance(points[i],points[j])*0.5); for(k=1;k<j;k++) if(!ans.In_Circle(points[k])) { Line l1=Line((points[i]+points[j])*0.5,Rotate(points[i]-points[j])); Line l2=Line((points[i]+points[k])*0.5,Rotate(points[i]-points[k])); Point O=Get_Intersection(l1,l2); ans=Circle(O,Distance(O,points[i])); } } } } cout<<fixed<<setprecision(2)<<ans.r<<endl<<ans.o.x<<' '<<ans.o.y<<endl; return 0; }