大意就是给出一个矩阵
初始每个位置上的值都为0
然后有两种操作
一种是更改某个位置上的值
另一个是求某个位置附近曼哈顿距离不大于K的所有位置的值的总和
网络上众多题解都是 二维树状数组
但是这题也被认为是cdq分治的基础题
下面提供两种基于cdq分治的解法
解法一:
将所有点绕原点左旋45°
然后新的坐标也很好计算
x' = (x - y) * sqrt(2) / 2
y' = (x + y) * sqrt(2) / 2
由于都是小数
所以乘个sqrt(2) 就成整数了
即
x' = (x - y)
y' = x + y
由于x- y可能是负数。所以把点都右移一下 x' = x + y + n (n是矩阵宽度)然后矩阵的宽度和长度也就各自扩大了一倍
然后我们就可以惊奇的发现
原先是求 abs(x - x0) + abs(y - y0) <= k 的所有位置的值的和
现在变成了 abs(x' - x0') <= k 或者abs(y' - y0') <= k 就可以了
也就变成了求一个子矩阵的和
然后用CDQ分治维护一个普通矩阵的和,类似于经典题bzoj 2683
<span style="font-size:18px;"><span style="font-size:18px;">// whn6325689 // Mr.Phoebe // http://blog.csdn.net/u013007900 #include <algorithm> #include <iostream> #include <iomanip> #include <cstring> #include <climits> #include <complex> #include <fstream> #include <cassert> #include <cstdio> #include <bitset> #include <vector> #include <deque> #include <queue> #include <stack> #include <ctime> #include <set> #include <map> #include <cmath> #include <functional> #include <numeric> #pragma comment(linker, "/STACK:1024000000,1024000000") using namespace std; typedef long long ll; typedef long double ld; typedef pair<ll, ll> pll; typedef complex<ld> point; typedef pair<int, int> pii; typedef pair<pii, int> piii; typedef vector<int> vi; #define CLR(x,y) memset(x,y,sizeof(x)) #define mp(x,y) make_pair(x,y) #define pb(x) push_back(x) #define lowbit(x) (x&(-x)) #define MID(x,y) (x+((y-x)>>1)) #define eps 1e-9 #define PI acos(-1.0) #define INF 0x3f3f3f3f #define LLINF 1LL<<62 template<class T> inline bool read(T &n) { T x = 0, tmp = 1; char c = getchar(); while((c < '0' || c > '9') && c != '-' && c != EOF) c = getchar(); if(c == EOF) return false; if(c == '-') c = getchar(), tmp = -1; while(c >= '0' && c <= '9') x *= 10, x += (c - '0'),c = getchar(); n = x*tmp; return true; } template <class T> inline void write(T n) { if(n < 0) { putchar('-'); n = -n; } int len = 0,data[20]; while(n) { data[len++] = n%10; n /= 10; } if(!len) data[len++] = 0; while(len--) putchar(data[len]+48); } //----------------------------------- const int MAXN=80010; struct Node { int kind; int x,y,z,idx; Node(int k=0,int xx=0,int yy=0,int zz=0,int idx=0):kind(k),x(xx),y(yy),z(zz),idx(idx){} }ask[4*MAXN],tmp1[4*MAXN],tmp2[4*MAXN]; int n,m,tot; int c[MAXN]; int ans[MAXN]; bool cmp(Node a,Node b) { if(a.x==b.x) return a.y<b.y; return a.x<b.x; } void update(int i,int v) { for(;i<MAXN;i+=lowbit(i)) c[i]+=v; } int getsum(int i) { int sum=0; for(;i;i-=lowbit(i)) sum+=c[i]; return sum; } void clr(int i) { for(;i<MAXN;i+=lowbit(i)) c[i]=0; } void change(int x,int y,int &xx,int &yy) { xx=x-y+n; yy=x+y; } void cdq(int l,int r) { if(l==r) return; int mid=MID(l,r); int l1=0,l2=0; cdq(l,mid); for(int i=l;i<=r;i++) { if(i<=mid && ask[i].kind==1) tmp1[l1++]=ask[i]; if(i> mid && ask[i].kind==2) tmp2[l2++]=ask[i]; } sort(tmp1,tmp1+l1,cmp); sort(tmp2,tmp2+l2,cmp); for(int i=0,j=0;i<l2;i++) { while(j<l1 && tmp1[j].x <= tmp2[i].x) { update(tmp1[j].y,tmp1[j].z);j++; } ans[tmp2[i].idx]+=getsum(tmp2[i].y)*tmp2[i].z; } for(int i=0;i<l1;i++) clr(tmp1[i].y); cdq(mid+1,r); } int main() { // freopen("data.txt","r",stdin); // freopen("wa.txt","w",stdout); while(read(n)&&n) { read(m); CLR(c,0);CLR(ans,0);CLR(ask,0);tot=0; for(int i=0,x,y,xx,yy,k,z;i<m;i++) { read(k),read(x),read(y),read(z); change(x,y,xx,yy); if(k==1) { tot++;ask[tot].kind=1;ask[tot].x=xx;ask[tot].y=yy;ask[tot].z=z;ask[tot].idx=i; } else { int x1=max(0,xx-z-1); int y1=max(0,yy-z-1); int x2=min(2*n,xx+z); int y2=min(2*n,yy+z); tot++;ask[tot].kind=2;ask[tot].x=x1;ask[tot].y=y1;ask[tot].z=1; ask[tot].idx=i; tot++;ask[tot].kind=2;ask[tot].x=x2;ask[tot].y=y1;ask[tot].z=-1;ask[tot].idx=i; tot++;ask[tot].kind=2;ask[tot].x=x1;ask[tot].y=y2;ask[tot].z=-1;ask[tot].idx=i; tot++;ask[tot].kind=2;ask[tot].x=x2;ask[tot].y=y2;ask[tot].z=1; ask[tot].idx=i; } } cdq(1,tot); for(int i=1;i<=tot;i++) if(ask[i].kind==2) { printf("%d\n",ans[ask[i].idx]); i+=3; } } return 0; } </span></span>
解法二:
同样是子矩阵
但是可以用斜线法解答
省略了旋转的部分
但是cdq分治的部分略显麻烦
<span style="font-size:18px;"><pre name="code" class="cpp">// whn6325689 // Mr.Phoebe // http://blog.csdn.net/u013007900 #include <algorithm> #include <iostream> #include <iomanip> #include <cstring> #include <climits> #include <complex> #include <fstream> #include <cassert> #include <cstdio> #include <bitset> #include <vector> #include <deque> #include <queue> #include <stack> #include <ctime> #include <set> #include <map> #include <cmath> #include <functional> #include <numeric> #pragma comment(linker, "/STACK:1024000000,1024000000") using namespace std; typedef long long ll; typedef long double ld; typedef pair<ll, ll> pll; typedef complex<ld> point; typedef pair<int, int> pii; typedef pair<pii, int> piii; typedef vector<int> vi; #define CLR(x,y) memset(x,y,sizeof(x)) #define mp(x,y) make_pair(x,y) #define pb(x) push_back(x) #define lowbit(x) (x&(-x)) #define MID(x,y) (x+((y-x)>>1)) #define eps 1e-9 #define PI acos(-1.0) #define INF 0x3f3f3f3f #define LLINF 1LL<<62 template<class T> inline bool read(T &n) { T x = 0, tmp = 1; char c = getchar(); while((c < '0' || c > '9') && c != '-' && c != EOF) c = getchar(); if(c == EOF) return false; if(c == '-') c = getchar(), tmp = -1; while(c >= '0' && c <= '9') x *= 10, x += (c - '0'),c = getchar(); n = x*tmp; return true; } template <class T> inline void write(T n) { if(n < 0) { putchar('-'); n = -n; } int len = 0,data[20]; while(n) { data[len++] = n%10; n /= 10; } if(!len) data[len++] = 0; while(len--) putchar(data[len]+48); } //----------------------------------- const int MAXN=80010; const int POS=10000; struct Node { int kind,idx; int x,y,z; }ask[MAXN],tmp1[MAXN],tmp2[MAXN]; int n,m; ll ans[MAXN],c[MAXN]; bool cmp1(Node a,Node b) { return a.x+a.y<=b.x+b.y; } bool cmp2(Node a,Node b) { return a.x+a.y+a.z<=b.x+b.y+b.z; } bool cmp3(Node a,Node b) { return a.x+a.y-a.z<=b.x+b.y-b.z; } void update(int i,int v) { for(;i<MAXN;i+=lowbit(i)) c[i]+=v; } ll getsum(int i) { ll sum=0; for(;i>0;i-=lowbit(i)) sum+=c[i]; return sum; } void clr(int i) { for(;i<MAXN;i+=lowbit(i)) c[i]=0; } void cdq(int l,int r) { if(l==r) return; int mid=MID(l,r); int l1=0,l2=0; cdq(l,mid); for(int i=l;i<=r;i++) { if(i<=mid && ask[i].kind==1) tmp1[l1++]=ask[i]; else if(i> mid && ask[i].kind==2) tmp2[l2++]=ask[i]; } sort(tmp1,tmp1+l1,cmp1); sort(tmp2,tmp2+l2,cmp2); for(int i=0,j=0;i<l2;i++) { int lim=tmp2[i].x+tmp2[i].y+tmp2[i].z; while(j<l1 && tmp1[j].x+tmp1[j].y<=lim) { update(tmp1[j].x-tmp1[j].y+POS,tmp1[j].z);j++; } ans[tmp2[i].idx]+=getsum(tmp2[i].x-tmp2[i].y+tmp2[i].z+POS)-getsum(tmp2[i].x-tmp2[i].y-tmp2[i].z-1+POS); } for(int i=0;i<l1;i++) clr(tmp1[i].x-tmp1[i].y+POS); sort(tmp2,tmp2+l2,cmp3); for(int i=0,j=0;i<l2;i++) { int lim=tmp2[i].x+tmp2[i].y-tmp2[i].z-1; while(j<l1 && tmp1[j].x+tmp1[j].y<=lim) { update(tmp1[j].x-tmp1[j].y+POS,tmp1[j].z);j++; } ans[tmp2[i].idx]-=getsum(tmp2[i].x-tmp2[i].y+tmp2[i].z+POS)-getsum(tmp2[i].x-tmp2[i].y-tmp2[i].z-1+POS); } for(int i=0;i<l1;i++) clr(tmp1[i].x-tmp1[i].y+POS); cdq(mid+1,r); } int main() { while(read(n)&&n) { read(m); CLR(ans,0);CLR(c,0); for(int i=1;i<=m;i++) { read(ask[i].kind),read(ask[i].x),read(ask[i].y),read(ask[i].z); ask[i].idx=i; } cdq(1,m); for(int i=1;i<=m;i++) if(ask[i].kind==2) printf("%lld\n",ans[i]); } return 0; } </span>
推荐 cdq分治基础题目
HDU 4742
HDU 5126
UVALIVE 5871
S菊苣训练之cdq和kd树