最经典的一道面积并的问题了。
要注意以下问题:
1.可以按照y的扫描线从小到大排序,然后依次求出每两根扫描线的长度和之间差的距离,得到面积
2.因为坐标值会很大,所以一般把坐标要离散化,然后去重,然后利用二分得到下标
3.假如读入的时候是double类型,然后保存以后其实可以用==去判断是否相等,浮点误差只会在进行过加减乘除以后才会产生
4.因为坐标值是点,然而我们应该按照区间段去编号,所以对于节点l,表示的其实是[l,l+1]这个区间段的长度,这样就将区间段彻底转换成点了
5.因为区间并每次查询的都是整个root,也就是说只要读S[1]就可以了,所以没必要写push_down和query,可以简化很多步骤
6.区间并的push_up比较特殊,,可以仔细瞧瞧
#include<map> #include<set> #include<cmath> #include<stack> #include<queue> #include<cstdio> #include<string> #include<vector> #include<cstring> #include<iostream> #include<algorithm> #include<functional> using namespace std; typedef long long LL; typedef pair<int, int> PII; #define lson l,m,rt<<1 #define rson m+1,r,rt<<1|1 #define root 1,rear,1 int const MX = 1e3 + 5; int rear, cnt[MX << 2]; double A[MX], S[MX << 2]; struct Que { int d; double top, L, R; Que() {} Que(double _top, double _L, double _R, int _d) { top = _top; L = _L; R = _R; d = _d; } bool operator<(const Que &b)const { return top < b.top; } } Q[MX]; int BS(double x) { int L = 1, R = rear, m; while(L <= R) { m = (L + R) >> 1; if(A[m] == x) return m; if(A[m] > x) R = m - 1; else L = m + 1; } return -1; } void push_up(int l, int r, int rt) { if(cnt[rt]) S[rt] = A[r + 1] - A[l]; else if(l == r) S[rt] = 0; else S[rt] = S[rt << 1] + S[rt << 1 | 1]; } void update(int L, int R, int d, int l, int r, int rt) { if(L <= l && r <= R) { cnt[rt] += d; push_up(l, r, rt); return; } int m = (l + r) >> 1; if(L <= m) update(L, R, d, lson); if(R > m) update(L, R, d, rson); push_up(l, r, rt); } int main() { int n, ansk = 0; //freopen("input.txt", "r", stdin); while(~scanf("%d", &n), n) { rear = 0; memset(cnt, 0, sizeof(cnt)); memset(S, 0, sizeof(S)); for(int i = 1; i <= n; i++) { double x1, y1, x2, y2; scanf("%lf%lf%lf%lf", &x1, &y1, &x2, &y2); Q[i] = Que(y1, x1, x2, 1); Q[i + n] = Que(y2, x1, x2, -1); A[++rear] = x1; A[++rear] = x2; } sort(Q + 1, Q + 1 + 2 * n); sort(A + 1, A + 1 + rear); rear = unique(A + 1, A + 1 + rear) - A - 1; double ans = 0, last = 0; for(int i = 1; i <= 2 * n; i++) { ans += (Q[i].top - last) * S[1]; update(BS(Q[i].L), BS(Q[i].R) - 1, Q[i].d, root); last = Q[i].top; } printf("Test case #%d\n", ++ansk); printf("Total explored area: %.2lf\n\n", ans); } return 0; }