- 线性代数 --- LU分解(Gauss消元法的矩阵表示)
松下J27
LinearAlgebra线性代数矩阵LU分解高斯消元矩阵运行gaussianLU
Gauss消元法等价于把系数矩阵A分解成两个三角矩阵L和U的乘法首先,LU分解实际上就是用矩阵的形式来记录的高斯消元的过程。其中,对矩阵A进行高斯消元后的结果为矩阵U,是LU分解后的两个三角矩阵中其中之一。U是一个上三角矩阵,U就是上三角矩阵uppertriangle的首字母的大写。高斯消元的每一步都能用基本消元矩阵E来表示。而所有的E都可以收录在一个矩阵当中,我这里叫他Z矩阵。Z矩阵就是集所有基
- 数学基础 -- 线性代数之行阶梯形
sz66cm
线性代数机器学习人工智能
行阶梯形行阶梯形(RowEchelonForm,REF)是线性代数中用于简化矩阵形式的一种方法,常用于求解线性方程组。矩阵经过行变换(如高斯消元法)后可以转换为行阶梯形,它具有以下特点:行阶梯形的定义零行在矩阵的底部:矩阵中如果存在一行全为零的行,这些行必须在矩阵的最下方。每一非零行的首个非零元素为1:这一元素称为该行的主元(leadingentry)。主元是从左到右的第一个非零元素,并且主元必须
- 乘法-逆矩阵
取个名字真难呐
线性代数矩阵算法线性代数
文章目录1.矩阵相乘-5种方式1.1C=AB1.2AX列组合1.3XB行组合1.4列行组合1.5块求和2.高斯消元法求A−1A^{-1}A−12.1求A−1A^{-1}A−12.2推理1.矩阵相乘-5种方式1.1C=AB假设我们要求得矩阵C=AB,可以用如下公式表示cij=∑k=1Naikbkj(1)c_{ij}=\sum_{k=1}^Na_{ik}b_{kj}\tag{1}cij=k=1∑Nai
- 课程大纲:图像处理中的矩阵计算
superdont
计算机视觉图像处理矩阵人工智能
课程名称:《图像处理中的矩阵计算》课程简介:图像处理中的矩阵计算是图像分析与处理的核心部分。本课程旨在教授学员如何应用线性代数中的矩阵计算,以实现各种图像处理技术。我们将通过强调实际应用和实践活动来确保学员能够理解和掌握这些概念。课程大纲:第1章:矩阵计算基础矩阵及其表示方式矩阵四则运算单位矩阵和逆矩阵矩阵的转置线性系统和矩阵的求解(高斯消元法)第2章:图像表示和颜色空间数字图像的矩阵表示灰度图像
- [数学]高斯消元
Waldeinsamkeit41
算法数据结构
介绍用处:求解线性方程组加减消元法和代入消元法这里引用了高斯消元解线性方程组----C++实现_c++用高斯消元法解线性方程组-CSDN博客改成了自己常用的形式:intgauss(){intc,r;//column,rowfor(c=1,r=1;cfabs(a[maxx][c]))maxx=i;if(fabs(a[maxx][c])=c;i--)a[r][i]/=a[r][c];//把现在的第r行
- 06 逆矩阵、列空间与零空间
林炒Lynn
06逆矩阵、列空间与零空间imageimage直观理解这几个概念,计算方法不作讨论,如"Gaussianelimination高斯消元法"和"rowechelonform行阶梯型".Letthecomputerdocomputing!Usefulnessofmatrices矩阵的用途计算机图形学机器人学被广泛应用的一个主要原因就是它能帮助我们求解特定的systemofequations方程组大部分
- 蓝桥杯_数学知识_1 (质数筛法 - 分解质因数 - 约数【约数个数 - 约数之和 - 最大公约数】 )
violet~evergarden
算法蓝桥杯c++
文章目录866.试除法判定质数868.筛质数((朴素)埃氏筛法、线性筛法)判断素数埃式筛法(朴素)线性筛法【分解质因数】869.试除法求约数(试除法)870.约数个数871.约数之和872.最大公约数1.数论【每一步都要想时间复杂度,看能不能做】2.组合计数3.高斯消元4.简单博弈论866.试除法判定质数给定n个正整数ai,判定每个数是否是质数。输入格式第一行包含整数n。接下来n行,每行包含一个正
- 计算机是怎么求解线性方程的(矩阵乘和求逆)
異轩
上回我们说到,高斯老哥用消元法解线性方程,大致步骤呢就是给系数矩阵消元,运气好点呢直接整出上三角系数矩阵,得到方程组的唯一解,运气不行呢,消着消着发现整不出上三角,这时就得再讨论方程是有多解还是无解。这里所说的"运气"呢其实可以根据行列式啊,Ax=0是否有解啊判断得到,具体操作可以看看我聊消元法的那一篇文章。但是,高斯消元法存在一个问题,就是它是给人做的,比如给第一行乘个倍数加到另一行,或者将矩阵
- AcWing.883.高斯消元解线性方程组
Die love 6-feet-under
算法c++笔记
输入一个包含n个方程n个未知数的线性方程组。方程组中的系数为实数。求解这个方程组。下图为一个包含m个方程n个未知数的线性方程组示例:输入格式第一行包含整数nnn。接下来nnn行,每行包含n+1n+1n+1个实数,表示一个方程的nnn个系数以及等号右侧的常数。输出格式如果给定线性方程组存在唯一解,则输出共nnn行,其中第iii行输出第iii个未知数的解,结果保留两位小数。注意:本题有SPJ,当输出结
- C++ 数论相关题目:高斯消元解异或线性方程组
伏城无嗔
数论力扣算法笔记c++算法
输入一个包含n个方程n个未知数的异或线性方程组。方程组中的系数和常数为0或1,每个未知数的取值也为0或1。求解这个方程组。异或线性方程组示例如下:M[1][1]x[1]^M[1][2]x[2]^…^M[1][n]x[n]=B[1]M[2][1]x[1]^M[2][2]x[2]^…^M[2][n]x[n]=B[2]…M[n][1]x[1]^M[n][2]x[2]^…^M[n][n]x[n]=B[n]
- 详解矩阵的LDU分解
唠嗑!
格密码的数学基础算法网络安全线性代数
目录一.矩阵分解二.解方程三.例题说明四.矩阵的LDU分解五.矩阵三角分解的唯一性一.矩阵分解其实我们可以把一个线性系统(LinearSystem)看成两个三角系统(TriangularSystems),本文章将解释为什么可以这么看待解线性方程组,以及这样理解到底有什么好处。我们知道高斯消元法其实跟矩阵的三角分解有关,如下:A=LU其中,A为任意方阵,L为下三角矩阵且对角线处元素均为1,U为上三角
- MIT_线性代数笔记:线性代数常用概念及术语总结
浊酒南街
MIT_线性代数笔记线性代数笔记
目录1.系数矩阵2.高斯消元法3.置换矩阵Permutation4.逆矩阵Inverse5.高斯-若尔当消元法6.矩阵的LU分解7.三角矩阵1.系数矩阵线性代数的基本问题就是解n元一次方程组。例如:二元一次方程组2x−y=0−x+2y=3\begin{align*}&2x-y=0\\&-x+2y=3\end{align*}2x−y=0−x+2y=3写成矩阵形式就是:[2−1−12][xy]=[03
- 数论知识及模板整理
smiling~
数论模板学习笔记算法
目录一、质数的判定1.试除法判定质数2.质因数的分解3.质数筛选法(埃氏筛法+线性筛)4.米勒罗宾素数检测法(快速判断大质数)二、约数相关(1)试除法求约数(2)求约数个数或约数之和(3)求最大公因数/最小公倍数三、欧几里得算法(1)扩展欧几里得算法(2)线性同余方程四、快速幂(1)快速幂算法(2)大数快速幂(降幂公式)(3)快速幂求逆元(费马小定理)五、欧拉函数六、组合数学七、高斯消元八、容斥原
- 第九周学习报告(1.15-1.21)
三冬四夏会不会有点漫长
#算法训练周报学习
知识点,比赛和做题情况知识点终于把acwing的算法基础课全部看完了(是一些简单的算法模板)比赛无做题情况1.CF写了一个教育场次的A题TrickySum(等差数列求和,循环)2.acwing900.(dp的一个模板题)883,884(高斯消元的模板题)885,886,887,888,889(组合数的模板题)890(容斥原理模板题)891,892,893,894(博弈论模板题)894,338,29
- 详解矩阵的三角分解A=LU
唠嗑!
格密码的数学基础算法线性代数网络安全
目录一.求解Ax=b二.上三角矩阵分解三.下三角矩阵分解四.矩阵的三角分解举例1:矩阵三角分解举例2:三角分解的限制举例3:主元和乘法因子均为1举例4:U为单位阵小结一.求解Ax=b我们知道高斯消元法可以对应矩阵的基础变换。先来看我们比较熟悉的Ax=b模型,如下:解这个方程很简单,只需要三步高斯消元步骤,分别乘以2,-1,-1.第一步:第二行减去第一行乘以2倍;第二步:第三行减去第一行乘以-1;第
- c语言求逆矩阵-高斯消元法
不会C语言的男孩
c语言矩阵开发语言
/***A表示输入的矩阵*B表示输出的逆矩阵*n表示秩的大小*/voidGauss(doubleA[][N],doubleB[][N],intn)//这里的n指的是n*n的方阵中的n{inti,j,k;doublemax,temp;doublet[N][N];//临时矩阵//将A矩阵存放在临时矩阵t[n][n]中for(i=0;ifabs(max)){max=t[j][i];k=j;}}//如果主
- 并行程序设计实验——高斯消元
NK.MainJay
c语言
并行程序设计实验——高斯消元一、问题描述熟悉高斯消元法解线性方程组的过程,然后实现SSE算法编程。过程中,自行构造合适的线性方程组,并选取至少2个角度,讨论不同算法策略对性能的影响。可选角度包括但不限于以下几种选项:①相同算法对于不同问题规模的性能提升是否有影响,影响情况如何;②消元过程中采用向量编程的的性能提升情况如何;③回代过程可否向量化,有的话性能提升情况如何;④数据对齐与不对齐对计算性能有
- 二维泊松方程求解-SIP-最速下降法-共轭梯度
CFD_Tyro
1.直接解法:LU分解在前面的内容中曾经提到,使用有限差分或有限体积法通过隐式离散得到的求解形式,其中为系数矩阵。在一定条件下,能够通过因式分解为,其中为下三角矩阵,为上三角矩阵。这样的分解方式在高斯消元中十分有用,对的求解可分为以下两步2.迭代法:incompleteLUdecomposition如果存在一个与近似的矩阵,对做LU分解,我们把这样的步骤称为的不完全LU分解,ILU,即其中为小量。
- HDU-5955 Guessing the Dice Roll(AC自动机、高斯消元)
上总介
文章目录原题链接题意思路推导代码原题链接GuessingtheDiceRoll题意给定N(1≤N≤10)N(1\leqN\leq10)N(1≤N≤10)个长度都为L(1≤L≤10)L(1\leqL\leq10)L(1≤L≤10)的数字序列Ti(1≤i≤10)T_i(1\leqi\leq10)Ti(1≤i≤10),数字序列仅由{1,2,3,4,5,6}\left\{1,2,3,4,5,6\right
- 算法有哪⼏类?
颓特别我废
C语言算法c语言
一、问题按照执⾏功能的不同,可以将算法分为不同的类别,那么算法有哪⼏类?二、解答计算机上的算法按照实现功能可以分为两⼤类:即数值型算法和⾮数值算法。1、数值型算法(NumericalAlgorithms)这类算法主要用于处理数值数据和解决数学问题,它们通常涉及到大量的数学计算,包括但不限于矩阵运算、微积分、线性代数、概率统计、优化问题等。例如,求解方程组的高斯消元法、数值积分方法如辛普森法则、牛顿
- C#,数值计算,高斯消元法与列主元消元法的源代码及数据动态可视化
深度混淆
C#算法演义AlgorithmRecipesC#数值计算NumericalRecipesc#算法高斯消元法线性代数
高斯消元法!一、高斯消元法GaussianElimination高斯消元法(或译:高斯消去法),是线性代数中的一个常用算法,常用于求解线性方程组和矩阵的逆。本程序的运行效果:1、高斯消元法的动画演示2、高斯列主元消元法的动画演示列主元素消去法是为控制舍入误差而提出来的一种算法,列主元素消去法计算基本上能控制舍入误差的影响,其基本思想是:在进行第k(k=1,2,...,n-1)步消元时,从第k列的a
- 【数值分析】高斯消元法,matlab实现
你哥同学
数值分析matlab线性代数高斯消元法列主元高斯消元法数值分析
高斯消元法An×nx=bA_{n\timesn}x=bAn×nx=b步骤:1.列出增广矩阵Z=[A∣b]2.迭代 , j=1,2,⋯ ,nZ第i行的每个元素乘以Zi−1,jZi,j , i=j+1,j+2,⋯ ,nZ第i行减去第j行 , 消元3.回代xi=bi−∑j=i+1nxj⋅Ai,jAi,i , i=n,n−1,⋯ ,1\begin{align*}1.&列出增广矩阵Z=[A|
- c++ 高斯消元算法实现
ldxxxxll
算法c++开发语言
c++有回代消元和无回代消元的算法在工程技术和工程管理中有许多问题经常可以归结为线性方程组类型的数学模型,这些模型中方程和未知量个数常常有多个,而且方程个数与未知量个数也不一定相同。那么这样的线性方程组是否有解呢?如果有解,解是否唯一?若解不唯一,解的结构如何呢?高斯消元即是用矩阵求解方程组的方法如下是高斯消元的c++代码,包含求解步骤的注释,看代码和注释更直观:/*使用方法constintN=4
- c++高斯消元法——简单高效求解线性方程组
yzc_qiuse
c++c++开发语言
c++高斯消元法——简单高效求解线性方程组1.概念引入1.1线性方程组1.2线性方程组和矩阵1.3无穷解、无解的情况1.3.1一元线性方程1.3.2nnn元线性方程组1.4高斯消元法2.例题精讲2.1【模板】高斯消元法2.1题目分析2.2.2代码2.2.3AC图片3.结语1.概念引入求解线性方程组在实际问题中具有广泛的应用。它可用于建立物理、工程、经济等领域的数学模型,并通过求解方程组来得到问题的
- 矩阵求逆(C语言)
kk.copt
C语言简单函数c语言算法线性代数矩阵
高斯消元法求逆对于任意一个矩阵Anxn,其满足。基于此,高斯消元法具体步骤是先构造一个增广矩阵W=[A|E],则W为一个nx2n的矩阵。我们需要对矩阵W进行矩阵行之间的变换,将其变为[E|B]的形势,如果能够成功变换,则B就为A矩阵的逆矩阵。具体操作过程如下:(1)将初始矩阵A右半部分进行扩增,得到矩阵W=[A|E],W为nx2n。(2)将首行作为基准,从上往下做行变换,将W前半部分转化为一个上三
- 高斯消元法——matlab实现
圆sir
笔记matlab开发语言
目录基本原理实验部分主要代码部分代码解析运行结果个人心得基本原理1.构造增广矩阵:将线性方程组的系数矩阵和常数向量合并成一个增广矩阵。2.选取主元:从第一列开始,找到当前列中绝对值最大的元素,将其作为主元素。3.行交换:交换包含主元素的行与当前处理的行,确保主元素在当前处理行的位置上。4.主元归一化:将主元所在的行除以主元素的值,使主元素变为1。5.消元操作:使用主元所在行的倍数,将当前处理行下方
- 数值分析总结
互联网的猫
算法其他
数值分析总结思维导图Docs相关代码的使用和注释列主元Gauss消元法%%列主元高斯消元法functionx=Gauss_lzy(A,b)%A为方程组系数矩阵,b为方程组的右侧向量,x为方程组的解[n,m]=size(A);%%得到矩阵A的行和列的宽度nb=length(b);%%方程组右侧向量的长度ifn~=m%%如果系数矩阵的行数和方程组右侧向量的长度不相等,错误error('%系数矩阵必须是
- matlab高斯差分,高斯变异算子matlab
weixin_39643255
matlab高斯差分
高斯消元法MATLAB实现_数学_自然科学_专业资料。.《数值分析》实验报告一、实验目的与要求1.掌握高斯消去法的基本思路和迭代步骤;2.培养编程与上机调试能力......(完整word版)高斯平滑滤波器(含matlab代码)_数学_自然科学_专业资料。GaussianSmoothingFilter高斯平滑滤波器一、图像滤波的基本概念图像常常被强度随机信号(也称......变异算子_数学_自然科学
- AcWing算法基础课----数学知识(三) 笔记 ( 高斯消元 + 求组合数 )
彡倾灬染|
算法学习笔记AcWingc++c语言
数学知识高斯消元O(n^3)求组合数1.递归法求组合数2.Lucas定理3.分解质因数法求组合数卡特兰数高斯消元O(n^3)解方程:无解\无穷多解\有唯一解利用线性代数初等行列变换1.把某一行乘一个非零的数2.交换某两行3.把某行若干倍加到另一行上去变换之后结果与解的关系:1.完美阶梯型唯一解2.不完美阶梯型0=非零无解3.不完美阶梯型0=0无穷解浮点数判断是否为零需要和eps比算法步骤:枚举每一
- 算法基础课—数学知识(四)高斯消元、组合数
肥肥饼
算法基础课算法数据结构
算法基础课—数学知识(四)高斯消元、组合数高斯消元——解方程组对于有解和无解的判断例子消元回代有无穷多个解的情况无解的情况算法思路题目代码模板自己的代码求组合数方法一模板自己的代码方法二题目模板代码方法三题目模板代码方法四题目模板自己的代码满足条件的01序列题目卡特兰数模板代码高斯消元——解方程组应用:在n的三次方时间内可以解n个方程组的解方法:矩阵的行列变换思想:先消元,再回代最后可以把矩阵变成
- SAX解析xml文件
小猪猪08
xml
1.创建SAXParserFactory实例
2.通过SAXParserFactory对象获取SAXParser实例
3.创建一个类SAXParserHander继续DefaultHandler,并且实例化这个类
4.SAXParser实例的parse来获取文件
public static void main(String[] args) {
//
- 为什么mysql里的ibdata1文件不断的增长?
brotherlamp
linuxlinux运维linux资料linux视频linux运维自学
我们在 Percona 支持栏目经常收到关于 MySQL 的 ibdata1 文件的这个问题。
当监控服务器发送一个关于 MySQL 服务器存储的报警时,恐慌就开始了 —— 就是说磁盘快要满了。
一番调查后你意识到大多数地盘空间被 InnoDB 的共享表空间 ibdata1 使用。而你已经启用了 innodbfileper_table,所以问题是:
ibdata1存了什么?
当你启用了 i
- Quartz-quartz.properties配置
eksliang
quartz
其实Quartz JAR文件的org.quartz包下就包含了一个quartz.properties属性配置文件并提供了默认设置。如果需要调整默认配置,可以在类路径下建立一个新的quartz.properties,它将自动被Quartz加载并覆盖默认的设置。
下面是这些默认值的解释
#-----集群的配置
org.quartz.scheduler.instanceName =
- informatica session的使用
18289753290
workflowsessionlogInformatica
如果希望workflow存储最近20次的log,在session里的Config Object设置,log options做配置,save session log :sessions run ;savesessio log for these runs:20
session下面的source 里面有个tracing 
- Scrapy抓取网页时出现CRC check failed 0x471e6e9a != 0x7c07b839L的错误
酷的飞上天空
scrapy
Scrapy版本0.14.4
出现问题现象:
ERROR: Error downloading <GET http://xxxxx CRC check failed
解决方法
1.设置网络请求时的header中的属性'Accept-Encoding': '*;q=0'
明确表示不支持任何形式的压缩格式,避免程序的解压
- java Swing小集锦
永夜-极光
java swing
1.关闭窗体弹出确认对话框
1.1 this.setDefaultCloseOperation (JFrame.DO_NOTHING_ON_CLOSE);
1.2
this.addWindowListener (
new WindowAdapter () {
public void windo
- 强制删除.svn文件夹
随便小屋
java
在windows上,从别处复制的项目中可能带有.svn文件夹,手动删除太麻烦,并且每个文件夹下都有。所以写了个程序进行删除。因为.svn文件夹在windows上是只读的,所以用File中的delete()和deleteOnExist()方法都不能将其删除,所以只能采用windows命令方式进行删除
- GET和POST有什么区别?及为什么网上的多数答案都是错的。
aijuans
get post
如果有人问你,GET和POST,有什么区别?你会如何回答? 我的经历
前几天有人问我这个问题。我说GET是用于获取数据的,POST,一般用于将数据发给服务器之用。
这个答案好像并不是他想要的。于是他继续追问有没有别的区别?我说这就是个名字而已,如果服务器支持,他完全可以把G
- 谈谈新浪微博背后的那些算法
aoyouzi
谈谈新浪微博背后的那些算法
本文对微博中常见的问题的对应算法进行了简单的介绍,在实际应用中的算法比介绍的要复杂的多。当然,本文覆盖的主题并不全,比如好友推荐、热点跟踪等就没有涉及到。但古人云“窥一斑而见全豹”,希望本文的介绍能帮助大家更好的理解微博这样的社交网络应用。
微博是一个很多人都在用的社交应用。天天刷微博的人每天都会进行着这样几个操作:原创、转发、回复、阅读、关注、@等。其中,前四个是针对短博文,最后的关注和@则针
- Connection reset 连接被重置的解决方法
百合不是茶
java字符流连接被重置
流是java的核心部分,,昨天在做android服务器连接服务器的时候出了问题,就将代码放到java中执行,结果还是一样连接被重置
被重置的代码如下;
客户端代码;
package 通信软件服务器;
import java.io.BufferedWriter;
import java.io.OutputStream;
import java.io.O
- web.xml配置详解之filter
bijian1013
javaweb.xmlfilter
一.定义
<filter>
<filter-name>encodingfilter</filter-name>
<filter-class>com.my.app.EncodingFilter</filter-class>
<init-param>
<param-name>encoding<
- Heritrix
Bill_chen
多线程xml算法制造配置管理
作为纯Java语言开发的、功能强大的网络爬虫Heritrix,其功能极其强大,且扩展性良好,深受热爱搜索技术的盆友们的喜爱,但它配置较为复杂,且源码不好理解,最近又使劲看了下,结合自己的学习和理解,跟大家分享Heritrix的点点滴滴。
Heritrix的下载(http://sourceforge.net/projects/archive-crawler/)安装、配置,就不罗嗦了,可以自己找找资
- 【Zookeeper】FAQ
bit1129
zookeeper
1.脱离IDE,运行简单的Java客户端程序
#ZkClient是简单的Zookeeper~$ java -cp "./:zookeeper-3.4.6.jar:./lib/*" ZKClient
1. Zookeeper是的Watcher回调是同步操作,需要添加异步处理的代码
2. 如果Zookeeper集群跨越多个机房,那么Leader/
- The user specified as a definer ('aaa'@'localhost') does not exist
白糖_
localhost
今天遇到一个客户BUG,当前的jdbc连接用户是root,然后部分删除操作都会报下面这个错误:The user specified as a definer ('aaa'@'localhost') does not exist
最后找原因发现删除操作做了触发器,而触发器里面有这样一句
/*!50017 DEFINER = ''aaa@'localhost' */
原来最初
- javascript中showModelDialog刷新父页面
bozch
JavaScript刷新父页面showModalDialog
在页面中使用showModalDialog打开模式子页面窗口的时候,如果想在子页面中操作父页面中的某个节点,可以通过如下的进行:
window.showModalDialog('url',self,‘status...’); // 首先中间参数使用self
在子页面使用w
- 编程之美-买书折扣
bylijinnan
编程之美
import java.util.Arrays;
public class BookDiscount {
/**编程之美 买书折扣
书上的贪心算法的分析很有意思,我看了半天看不懂,结果作者说,贪心算法在这个问题上是不适用的。。
下面用动态规划实现。
哈利波特这本书一共有五卷,每卷都是8欧元,如果读者一次购买不同的两卷可扣除5%的折扣,三卷10%,四卷20%,五卷
- 关于struts2.3.4项目跨站执行脚本以及远程执行漏洞修复概要
chenbowen00
strutsWEB安全
因为近期负责的几个银行系统软件,需要交付客户,因此客户专门请了安全公司对系统进行了安全评测,结果发现了诸如跨站执行脚本,远程执行漏洞以及弱口令等问题。
下面记录下本次解决的过程以便后续
1、首先从最简单的开始处理,服务器的弱口令问题,首先根据安全工具提供的测试描述中发现应用服务器中存在一个匿名用户,默认是不需要密码的,经过分析发现服务器使用了FTP协议,
而使用ftp协议默认会产生一个匿名用
- [电力与暖气]煤炭燃烧与电力加温
comsci
在宇宙中,用贝塔射线观测地球某个部分,看上去,好像一个个马蜂窝,又像珊瑚礁一样,原来是某个国家的采煤区.....
不过,这个采煤区的煤炭看来是要用完了.....那么依赖将起燃烧并取暖的城市,在极度严寒的季节中...该怎么办呢?
&nbs
- oracle O7_DICTIONARY_ACCESSIBILITY参数
daizj
oracle
O7_DICTIONARY_ACCESSIBILITY参数控制对数据字典的访问.设置为true,如果用户被授予了如select any table等any table权限,用户即使不是dba或sysdba用户也可以访问数据字典.在9i及以上版本默认为false,8i及以前版本默认为true.如果设置为true就可能会带来安全上的一些问题.这也就为什么O7_DICTIONARY_ACCESSIBIL
- 比较全面的MySQL优化参考
dengkane
mysql
本文整理了一些MySQL的通用优化方法,做个简单的总结分享,旨在帮助那些没有专职MySQL DBA的企业做好基本的优化工作,至于具体的SQL优化,大部分通过加适当的索引即可达到效果,更复杂的就需要具体分析了,可以参考本站的一些优化案例或者联系我,下方有我的联系方式。这是上篇。
1、硬件层相关优化
1.1、CPU相关
在服务器的BIOS设置中,可
- C语言homework2,有一个逆序打印数字的小算法
dcj3sjt126com
c
#h1#
0、完成课堂例子
1、将一个四位数逆序打印
1234 ==> 4321
实现方法一:
# include <stdio.h>
int main(void)
{
int i = 1234;
int one = i%10;
int two = i / 10 % 10;
int three = i / 100 % 10;
- apacheBench对网站进行压力测试
dcj3sjt126com
apachebench
ab 的全称是 ApacheBench , 是 Apache 附带的一个小工具 , 专门用于 HTTP Server 的 benchmark testing , 可以同时模拟多个并发请求。前段时间看到公司的开发人员也在用它作一些测试,看起来也不错,很简单,也很容易使用,所以今天花一点时间看了一下。
通过下面的一个简单的例子和注释,相信大家可以更容易理解这个工具的使用。
- 2种办法让HashMap线程安全
flyfoxs
javajdkjni
多线程之--2种办法让HashMap线程安全
多线程之--synchronized 和reentrantlock的优缺点
多线程之--2种JAVA乐观锁的比较( NonfairSync VS. FairSync)
HashMap不是线程安全的,往往在写程序时需要通过一些方法来回避.其实JDK原生的提供了2种方法让HashMap支持线程安全.
- Spring Security(04)——认证简介
234390216
Spring Security认证过程
认证简介
目录
1.1 认证过程
1.2 Web应用的认证过程
1.2.1 ExceptionTranslationFilter
1.2.2 在request之间共享SecurityContext
1
- Java 位运算
Javahuhui
java位运算
// 左移( << ) 低位补0
// 0000 0000 0000 0000 0000 0000 0000 0110 然后左移2位后,低位补0:
// 0000 0000 0000 0000 0000 0000 0001 1000
System.out.println(6 << 2);// 运行结果是24
// 右移( >> ) 高位补"
- mysql免安装版配置
ldzyz007
mysql
1、my-small.ini是为了小型数据库而设计的。不应该把这个模型用于含有一些常用项目的数据库。
2、my-medium.ini是为中等规模的数据库而设计的。如果你正在企业中使用RHEL,可能会比这个操作系统的最小RAM需求(256MB)明显多得多的物理内存。由此可见,如果有那么多RAM内存可以使用,自然可以在同一台机器上运行其它服务。
3、my-large.ini是为专用于一个SQL数据
- MFC和ado数据库使用时遇到的问题
你不认识的休道人
sqlC++mfc
===================================================================
第一个
===================================================================
try{
CString sql;
sql.Format("select * from p
- 表单重复提交Double Submits
rensanning
double
可能发生的场景:
*多次点击提交按钮
*刷新页面
*点击浏览器回退按钮
*直接访问收藏夹中的地址
*重复发送HTTP请求(Ajax)
(1)点击按钮后disable该按钮一会儿,这样能避免急躁的用户频繁点击按钮。
这种方法确实有些粗暴,友好一点的可以把按钮的文字变一下做个提示,比如Bootstrap的做法:
http://getbootstrap.co
- Java String 十大常见问题
tomcat_oracle
java正则表达式
1.字符串比较,使用“==”还是equals()? "=="判断两个引用的是不是同一个内存地址(同一个物理对象)。 equals()判断两个字符串的值是否相等。 除非你想判断两个string引用是否同一个对象,否则应该总是使用equals()方法。 如果你了解字符串的驻留(String Interning)则会更好地理解这个问题。
- SpringMVC 登陆拦截器实现登陆控制
xp9802
springMVC
思路,先登陆后,将登陆信息存储在session中,然后通过拦截器,对系统中的页面和资源进行访问拦截,同时对于登陆本身相关的页面和资源不拦截。
实现方法:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23