I hope you know the beautiful Union-Find structure. In this problem, you're to implement something similar, but not identical.
The data structure you need to write is also a collection of disjoint sets, supporting 3 operations:
1 p q
Union the sets containing p and q. If p and q are already in the same set, ignore this command.
2 p q
Move p to the set containing q. If p and q are already in the same set, ignore this command
3 p
Return the number of elements and the sum of elements in the set containing p.
Initially, the collection contains n sets: {1}, {2}, {3}, ..., {n}.
There are several test cases. Each test case begins with a line containing two integers n and m (1<=n,m<=100,000), the number of integers, and the number of commands. Each of the next m lines contains a command. For every operation, 1<=p,q<=n. The input is terminated by end-of-file (EOF). The size of input file does not exceed 5MB.
For each type-3 command, output 2 integers: the number of elements and the sum of elements.
5 7 1 1 2 2 3 4 1 3 5 3 4 2 4 1 3 4 3 3
3 12 3 7 2 8题目大意:命令1:将a b 所在的集合合并 。
命令2:将a 移动到b集合。
命令3:输出a所在集合所有元素的和以及个数。
解题思路:用并查集去做,主要处理的一点就是根进行命令2操作的时候。解决方法就是新增一个不会改变的根,例如:far[i + N] = far[i] = i + N;这样i只向i+ N,移动i时就不会导致下边的指向发生错误。
#include <stdio.h> #define N 100000 int far[2 * N + 10], sum [N + 10], cnt[N + 10]; int n, m, t, a, b; int get(int x){ return x != far[x]?far[x] = get(far[x]):x; } int main(){ while (scanf("%d%d", &n, &m) != EOF){ // Init; for (int i = 1; i <= n; i++){ far[N + i] = far[i] = i + N; sum[i] = i; cnt[i] = 1; } for (int i = 0; i < m; i++){ scanf("%d", &t); if (t == 1){ scanf("%d%d", &a, &b); if (get(a) != get(b)){ sum[get(b) - N] += sum[get(a) - N]; cnt[get(b) - N] += cnt[get(a) - N]; far[get(a)] = get(b); } } else if (t == 2){ scanf("%d%d", &a, &b); if (get(a) != get(b)){ sum[get(a) - N] -= a; cnt[get(a) - N]--; sum[get(b) - N] += a; cnt[get(b) - N]++; far[a] = get(b); } } else{ scanf("%d", &a); printf("%d %d\n", cnt[get(a) - N], sum[get(a) - N]); } } } return 0;}