Volume of n-simplex | n维单纯形的体积


An is an n-simplex which is supported by n vectors (a1,a2,…,an) of same origin.
Vn is the signed volume of An.


After we apply Gram–Schmidt orthogonalization to (a1,a2,…,an), we will get (a1,a2’,…,an’), the orthogonal basis of n-dimensional vector space.
Transpose of a1 =(h1,0,…,0)
Transpose of a2’=(0,h2,…,0)

Transpose of an’=(0,0,…,hn)

① V1=h1
② t = h2-h

V2=h20V1(th2)dt

V3=h30V2(th3)2dt

...

Vn=hn0Vn1(thn)n1dt

hn,Vn1 can be + or -.
t/hn should always be (and it will be) + to make Vn1 and Vn1(thn)n1 the same sign.

Vn=Vn1hn1ntnnhn0=hnnVn1=hnnhn1n1Vn2=...=hnhn1...h2n!V1=1n!hnhn1...h1

=1n!det(a1,a2,...,an)=1n!det(a1,a2,...,an)

a2=a2c21a1
a3=a3c31a1c32a2
a4=a4c41a1c42a2c43a3

an=ancn1a1cn2a2...cnn1an1

det(a1,a2,...,an)
=det(a1,a2,a3,...,an)
=det(a1,a2,a3,...,an)=...
=det(a1,a2,...,an1,an)
=det(a1,a2,...,an)

Reference
- Simplex Volumes and … http://mathpages.com/home/kmath664/kmath664.htm
- Volume of n-d parallelepiped http://blog.csdn.net/u010476094/article/details/44746143

你可能感兴趣的:(单纯形)