Aim: Find oˆ such that
Problem: Analytic solution of likelihood equations not always available.
Example: Censored exponentially distributed observations
Suppose that and that the censored times
are observed. Let m be the number of uncensored observations. Then
with first and second derivative
Thus we obtain for the observed and expected information
Thus the MLE can be obtained be the Newton-Raphson iteration
Numerical example: Choose starting value in (0, 1)
Implementation in R:
- #Statistics 24600 - Spring 2004
- #Instructor: Michael Eichler
- #
- #Method : Newton-Raphson method
- #Example: Exponential distribution
- #----------------------------------
- #Log-likelihood with first and second derivative
- ln<-function(p,Y,R) {
- m<-sum(R==1)
- ln<-m*log(p)-p*sum(Y)
- attr(ln,"gradient")<-m/p-sum(Y)
- attr(ln,"hessian")<--m/p^2
- ln
- }
- #Newton-Raphson method
- newmle<-function(p,ln) {
- l<-ln(p)
- pnew<-p-attr(l,"gradient")/attr(l,"hessian")
- pnew
- }
- #Simulate censored exponentially distributed data
- Y<-rexp(10,1/5)
- R<-ifelse(Y>10,0,1)
- Y[R==0]=10
- #Plot first derivative of the log-likelihood
- x<-seq(0.05,0.6,0.01)
- plot(x,attr(ln(x,Y,R),"gradient"),type="l",
- xlab=expression(theta),ylab="Score function")
- abline(0,0)
- #Apply Newton-Raphson iteration 3 times
- p<-newmle(p,ln,Y=Y,R=R)
- p
- p<-newmle(p,ln,Y=Y,R=R)
- p
- p<-newmle(p,ln,Y=Y,R=R)
- p