hdu3848 CC On The Tree

思路:一棵树,叶子节点上有一个苹果,问CC从哪个非叶子节点出发获得两个苹果话的时间最少,速度one meter per second,给出两相连两点之间的距离。

这个就是树形dp;

dp[i][j]表示在第i号节点获取j个苹果的代价。

dp[u][2] = min(dp[u][2], dp[u][1] + dp[v][1] + val);

dp[u][1] = min(dp[u][1],dp[v][1]+val);

// #pragma comment(linker, "/STACK:1024000000,1024000000")
#include <iostream>
#include <algorithm>
#include <iomanip>
#include <sstream>
#include <string>
#include <stack>
#include <queue>
#include <deque>
#include <vector>
#include <map>
#include <set>
#include <cstdio>
#include <cstring>
#include <cmath>
#include <cstdlib>
#include <climits>
using namespace std;
// #define DEBUG
#ifdef DEBUG
#define debug(...) printf( __VA_ARGS__ )
#else
#define debug(...)
#endif
#define CLR(x) memset(x, 0,sizeof x)
#define MEM(x,y) memset(x, y,sizeof x)
#define pk push_back
template<class T> inline T Get_Max(const T&a,const T&b){return a < b?b:a;}
template<class T> inline T Get_Min(const T&a,const T&b){return a < b?a:b;}
typedef long long LL;
typedef unsigned long long ULL;
typedef pair<int,int> ii;
const double eps = 1e-10;
const int inf = 1 << 30;
const int INF = 0x3f3f3f3f;
const int MOD = 1e9 + 7;
const int maxn = 10010;
vector<ii> G[maxn];
int deg[maxn];
int dp[maxn][3];
int in[maxn];
int n;
int Min;
void Search(int u,int fa){
	for (int i = 0;i < G[u].size();++i){
		int v = G[u][i].first;
		int w = G[u][i].second;
		if (v==fa)continue;
		Search(v,u);
		// int ans = dp[u][1];
		dp[u][2] = Get_Min(dp[u][2],dp[u][1]+dp[v][1]+w);
		dp[u][1] = Get_Min(dp[u][1],dp[v][1]+w);
		Min = Get_Min(Min, dp[u][2]);
	}
}
int main()
{	
	// freopen("in.txt","r",stdin);
	// freopen("out.txt","w",stdout);
	while(scanf("%d",&n) != EOF && n){
		// memset(dp, INF,sizeof dp);
		for (int i = 1;i <= n;++i){
			dp[i][1] = dp[i][2] = inf;
		}
		memset(in, 0,sizeof in);
		memset(deg, 0,sizeof deg);
		Min = INF;
		for (int i = 1;i <= n;++i)
			G[i].clear();
		int root;
		int u, v, c;
		for (int i = 1;i <= n - 1;++i){
			scanf("%d%d%d",&u,&v,&c);
			deg[u]++;
			deg[v]++;
			G[u].push_back(ii(v, c));
			G[v].push_back(ii(u, c));
			in[v] = 1;
		}
		for (int i = 1;i <= n;++i){
			if (deg[i]==1) dp[i][1]=0;
		}
		for (int i = 1;i <= n;++i){
			if (in[i]==0){
				root = i;
				break;
			}
		}
		Search(root, -1);
		cout << Min << endl;
	}
	return 0;
}


你可能感兴趣的:(树形DP)