hdu1465 不容易系列之一

Problem Description
大家常常感慨,要做好一件事情真的不容易,确实,失败比成功容易多了!
做好“一件”事情尚且不易,若想永远成功而总从不失败,那更是难上加难了,就像花钱总是比挣钱容易的道理一样。
话虽这样说,我还是要告诉大家,要想失败到一定程度也是不容易的。比如,我高中的时候,就有一个神奇的女生,在英语考试的时候,竟然把40个单项选择题全部做错了!大家都学过概率论,应该知道出现这种情况的概率,所以至今我都觉得这是一件神奇的事情。如果套用一句经典的评语,我们可以这样总结:一个人做错一道选择题并不难,难的是全部做错,一个不对。

不幸的是,这种小概率事件又发生了,而且就在我们身边:
事情是这样的——HDU有个网名叫做8006的男性同学,结交网友无数,最近该同学玩起了浪漫,同时给n个网友每人写了一封信,这都没什么,要命的是,他竟然把所有的信都装错了信封!注意了,是全部装错哟!

现在的问题是:请大家帮可怜的8006同学计算一下,一共有多少种可能的错误方式呢?
 

Input
输入数据包含多个多个测试实例,每个测试实例占用一行,每行包含一个正整数n(1<n<=20),n表示8006的网友的人数。
 

Output
对于每行输入请输出可能的错误方式的数量,每个实例的输出占用一行。
 

Sample Input
   
   
   
   
2 3
 

Sample Output
   
   
   
   
1

2

解题报告:

     1、当N=1和2时,易得解,假设F(N-1)和F(N-2)已经得到,重点分析下面的情况:
     2、当有N封信的时候,前面N-1封信可以有N-1或者 N-2封错装
     3、前者,对于每一种错装,可以从N-1封信中任意取一封和第 N封错装,故=F(N-1) * (N-1)
     4、后者简单,只能是没装错的那封信和第N封信交换信封,没装错的那封信可以是前面N-1封信中的任意一个,故= F(N-2) * (N-1)
    得到如下递推公式:
     基本形式:d[1]=0;   d[2]=1 递归式:d[n]= (n-1)*( d[n-1] + d[n-2])
     这就是著名的欧拉全错排公式:
f(n)=n!(1-1/1!+1/2!-1/3!+1/4!+...+(-1)^n*1/n!);(n>1)
#include <cmath>
#include <ctime>
#include <cctype>
#include <climits>
#include <cstdio>
#include <cstdlib>
#include <cstring>

#include <map>
#include <set>
#include <queue>
#include <stack>
#include <string>
#include <vector>
#include <sstream>
#include <iostream>
#include <algorithm>

#define INF (INT_MAX / 10)
#define clr(arr, val) memset(arr, val, sizeof(arr))
#define pb push_back
#define sz(a) ((int)(a).size())

using namespace std;
typedef set<int> si;
typedef vector<int> vi;
typedef map<int, int> mii;
typedef pair<int, int> pii;
typedef long long ll;

const double esp = 1e-5;

#define N 50100
int main()
{
	__int64 arr[21];
	int num,i;
	while(scanf("%d",&num)!=EOF)
	{
	 arr[1]=0;
	arr[2]=1;
	for(i=3;i<21;i++)
	{
		arr[i]=(i-1)*(arr[i-1]+arr[i-2]);
	}
	printf("%I64d\n",arr[num]); 
	} 
	return 0;
}


你可能感兴趣的:(数学,HDU)